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Abstract

For a variety of reasons, agricultural insurance programs use losses against an
index (rainfall, area yield) rather than losses against individual yields to make pay-
outs. While this facilitates the supply of insurance, the resulting basis risk reduces
the value of insurance and therefore reduces demand for it. Using district crop
yields and rainfall data for India, we find that the association between crop yields
and rainfall index is characterized by the statistical property of ’tail-dependence’.
This implies that the associations between yield losses and index losses are stronger
for large deviations than for small deviations. Or, basis risk is least for large devi-
ations of the index. Using simulation we show that value to a risk averse farmer
of index-based insurance relative to actuarial cost is highest for insurance against
extreme or catastrophic losses (of the index) than for insurance against all losses.
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1 Introduction

Agriculture and agriculture-based livelihoods in developing countries are highly prone

to weather shocks. Although there exist various informal mechanisms in rural com-

munities that allow farmers to pool their idiosyncratic risks, such insurance is often

partial and, moreover, provide limited insurance to individual households when risks

are correlated and widespread. 1 Extreme climate events such as droughts, floods and

heat waves which affect farming communities in a region simultaneously are instances

of correlated andwidespread risks. There is substantial evidence that rural households

in high risk environment stick to low return subsistence agriculture and cope with a

correlated shock by liquidating productive assets to maintain consumption thus re-

maining trapped in poverty (Rosenzweig and Binswanger, 1993; Carter and Barrett,

2006; Dercon and Christiaensen, 2011).

Even though farmers in developing countries are typically poor and even

though they bear the burden of volatile income streams, formal insurance products

have had limited success (Mobarak and Rosenzweig, 2013). The difficulties of adminis-

tering first best insurance programs tailored to production histories of individual farm-

ers have led to index insurance products where payouts are triggered by an index such

as rainfall, temperature or local average yields. Premium setting is relatively easier be-

cause past data on indices of weather and average yield are more readily available than

on individual production histories. As individual farmers have little or no influence

on payouts, index-based insurance products are also less likely to fail due to asymme-

try in information between the insurer and the insured. Despite the promise of index
1The literature on risk sharing in communities is large. Overviews include Bardhan and Udry (1999),

Fafchamps (2003), Morduch (1999, 2005), Townsend (1994).
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insurance, the record is mixed. In particular, the uptake of index insurance is poor, es-

pecially when it is not subsidized (Binswanger-Mkhize, 2012; Jensen and Barrett, 2017;

Jensen et al., 2016).

The literature has highlightedmany reasons for the lowuptake. These include

the unfamiliarity among farmers of formal insurance, the lack of trust in the insurance

provider, the difficulties of communication resulting in poor understanding of the in-

surance product. Poor farmers also face liquidity constraints and insurance demand is

highly sensitive to price (Cole et al., 2013, 2014; Giné et al., 2008).

However, even if the above factors were absent, research has highlighted the

fundamental constraint of basis risk which occurs because of imperfect correlation be-

tween the index and farmer losses. If the association is weak, then index insurance

might not be reliable (Morsink et al., 2016). Research has shown, both theoretically

and empirically, that basis risk reduces the demand for insurance (Clarke, 2016; Elabed

and Carter, 2015; Giné et al., 2008; Hill et al., 2016). The importance of acknowledging

basis risk is stressed in a recent study that states "Discerning the magnitude and distri-

bution of basis risk should be of utmost importance for organizations promoting index

insurance products, lest they inadvertently peddle lottery tickets under an insurance

label" (Jensen et al., 2016).

Index insurance products are, at best, designed to offer protection against ag-

gregate or covariate risks (Miranda, 1991; Ramaswami and Roe, 2004; Carter et al.,

2014). The lack of a perfect association between the index and losses at the farmer level

can, therefore, arise either because the index is not accurate or because idiosyncratic

losses are substantial. While previous work has established the sensitivity of insurance
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demand and farmer welfare to basis risk, there has not beenmuchwork on contract de-

sign that reduces basis risk. Chantarat et al. (2013) described an index based livestock

insurance where the contract was based on a regression of historic mortality rates on

an index of vegetative cover and therefore, was designed to minimize basis risk. In a

similar vein, this paper examines how rainfall insurance contracts in India can be de-

signed to reduce basis risk. However, we do not use regression-basedmethods because

a least squares fit is based on the idea of linear correlation. Our approach exploits the

idea that the joint distribution of rainfall and output might be characterized by tail

dependence. This means that the associations between yield losses and index losses

are stronger for large deviations than for small deviations. The major implication is

that the value (to farmers) of index-based insurance relative to actuarial cost is highest

for insurance against extreme or catastrophic losses (of the index) than for insurance

against all losses. Or in simpler words, basis risk is least for large deviations of the

index. The goal of this paper is to test this hypothesis.

The contribution of this paper is two-fold. First, it adds to the slender work

on how contracts can be designed to lower basis risk. Second, it uses general measures

of association (rather than the linear concept of correlation) to characterize the depen-

dence between the index and crop losses. Previous work has recognized that lower

tail dependence characterizes the joint distribution of spatial yields (Du et al., 2017;

Goodwin, 2014; Goodwin and Hungerford, 2015) and also the joint distribution of spa-

tial rainfall (Aghakouchak et al., 2010). The paper argues that these two facts imply

that the joint distribution of rainfall and yields will also exhibit lower tail dependence.

Testing this hypothesis and examining its implications for the design of insurance is

the contribution of this paper.
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The paper estimates the tail dependence in the joint distribution of weather

(i.e., rainfall) and yields using a district level data set for all India and for 9 major crops.

Using maximum likelihood methods, the paper estimates a number of copulas from

the parametric families of elliptical copulas and the Archimedean copulas. The best-fit

copulas are joined to a conceptual model of an insurance purchaser. The simulation of

the copulas allows us to estimate the optimal insurance cover for a variety of insurance

contracts that vary according to the index threshold value that triggers payout. These

results are compared to those obtained from a copula without tail dependence (the

Gaussian copula).

A preview of the findings is as follows. We find that station level rainfall in

India do exhibit tail dependence and the joint distribution of district level crop yields

for nine major crops and rainfall index also exhibit tail dependence. This implies that

the associations between yield losses and index losses are stronger for large deviations

than for small deviations. Or that the basis risk is least for large deviations of the index.

This is also confirmed by simulations that show that value to a risk averse farmer of

index-based insurance relative to actuarial cost is highest for insurance against extreme

or catastrophic losses (of the index) than for insurance against all losses. Because of tail

dependence, the demand for commercially priced rainfall insurance is more likely to

be positive when coverage is restricted to extreme losses.
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2 Relation to Literature

There is no universally accepted definition of basis risk. However, it is commonly un-

derstood to arise from the imperfect association between farm level losses and the index

that triggers insurance payments. As a result, losses that are actually incurred may not

always be compensated by insurance. A particularly stark case is when the farmer suf-

fers a loss but receives no payout. Clarke (2016) refers to the probability of such an event

as basis risk. Higher is this probability, greater is the basis risk. In these states of high

marginal utility, not only does the farmer not receive indemnities but actually suffers

cash outflow to pay premiums. For this reason, a risk averse farmer would not want to

buy ’too much’ of insurance. Higher basis risk reduces the demand for insurance.

A simple model is useful to clarify basis risk and to understand the contri-

bution of this paper. An index insurance is offered to farmers in a region R (village,

cooperative, or other units of aggregation). Consider the followingmodel of yield risk.

2

yir = µiRηiR (1)

where µiR is the expected yield of producer i in regionR and ηiR is a unitmean

random variable capturing the risks of farming. ηiR is a product of two independent

unit mean shocks - an aggregate or covariate shock θR that affects all farmers in the
2The model is drawn from Ramaswami and Roe (2004).
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region and an idiosyncratic shock eiR that affects only producer i and is given by

ηiR = eiRθR (2)

Assuming each producer’s share of land in the region iswiR, the area yield for

the region R is

y = θR
∑

(i∈R)
wiRµiReiR (3)

Let µR = ∑
iwiRµiR denote the expected area yield. Then the area yield can

be approximated as 3

y = θRµR (4)

Therefore, in this model, the aggregate shock θR is completely captured by

area yield. Finally, insurance payouts z to every insured farmer in the region R is a

function of the value of an index xR. While the exact function is unimportant here, a

typical insurance contract is of the form

zR = max{α(xm − xR), 0} (5)

where xm and α are positive parameters of the contract. xm is a deductible.
3∑

(i∈R) wiRµiReiR =
∑

(i∈R) wiR(µiR−µR)(eiR− ē)+µRēR where ēR =
∑

i wiReiR. The first term is
approximately zero (independence of idiosyncratic shocks from expected yield) and in the second term
the average idiosyncratic shock is approximately equal to its mean, i.e., 1.
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If xm is high, the insurance covers small and large losses. If it is low, the insurance

provides only catastrophic cover.

With reference to this model, basis risk can be quantified in various ways. A

simple approach is to examine the correlation between farm yield yiR and insurance

payments zR or the index xR. As this assumes, basis risk is constant for all values

for the index, this paper will consider general dependence structures that incorporate

non-linear association. In particular, it may be important to consider the association

between yield and the index when the index losses are large. Morsink et al. (2016)

propose twomeasures of the reliability of index insurance. The first metric is the prob-

ability of not receiving an insurance payout in the event of a catastrophic loss. The sec-

ond measure is the ratio of expected payout to premium in the event of a catastrophic

loss. This paper considers a further nuance: what is the basis risk (or the reliability of

index insurance) for different values of the deductible? In particular, is the basis risk

appreciably lower for a low xm?

The literature has distinguished between two sources of basis risk (Jensen

et al., 2016; Morsink et al., 2016). First, if the index is poorly chosen, then aggregate

shocks might not be sufficiently sensitive to the index. This has been called insured

peril basis risk (Morsink et al., 2016) or design risk (Jensen et al., 2016). In the model

described above, area yield is a sufficient statistic for the aggregate shock. However,

computation of area yield involves crop cutting experiments or other means of assess-

ing average yield. The greater administrative costs might lead insurance companies

to choose an easily measurable weather parameter such as rainfall to approximate the

aggregate shock. The problem is that average yield may depend on rainfall as well as
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other factors such as hailstorms, or pests that affect the entire region. We can write

yR = f(IR, νR) (6)

where IR is an index of rainfall and νR stands in for all other factors that affect

average yield. The absence of a perfect association between rainfall and average yield

constitutes the design risk in this model.

Clarke et al. (2012) analyze this source of basis risk in 270 weather insurance

contracts in a state of India. They estimate that there is a one-in-three chance of not re-

ceiving insurance payout in the event of a total production loss (of area average yield).

In a follow-up analysis, Clarke (2016) argued that, if the contracts were priced com-

mercially (i.e., unsubsidized), the basis risk in them was so great as to reduce optimal

demand to zero.

The model described above assumed that all producers in the region R face

the same aggregate shock. However, even within a small region, rainfall may not occur

uniformly. On the other hand, the index of rainfall is computed from one point in the

region. Another source of design risk is therefore the imperfect association between

rainfall at the farm location and rainfall at the weather station. Previous research has

measured such design risk by the distance from the farm to the weather station (that

measures the index). This has been shown to reduce insurance demand (Mobarak and

Rosenzweig, 2013; Hill et al., 2016).

Even if the index accurately captures aggregate shocks, a second source of ba-

sis risk comes from the fact that the aggregate shock is only one component of loss.
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In particular, individual specific shocks not captured by the index could also lead to

a weak association between the losses in the index and individual farm output losses.

Such basis risk has been called production smoothing basis risk (Morsink et al., 2016).

Ramaswami and Roe (2004) showed that if individual and aggregate shocks interact

multiplicatively (as in above model), then even if index insurance insures aggregate

shocks perfectly (i.e., no design risk), the presence of uninsured individual specific

risks could reduce the demand for index insurance. 4 Empirically, Jensen et al. (2016),

using a unique household level panel, analyze the different sources of basis risk for an

index based livestock contract offered in Northern Kenya. They find that the livestock

contract did reduce household exposure to aggregate risk, principally, droughts. On

average, risk exposure to covariate shocks dropped by about 63%. The failure to reach

100% is reflecting of the design errors in the contract. While the contract was not de-

signed to reduce idiosyncratic risk, such risks were large. Even at the smallest levels of

aggregation, idiosyncratic risk accounted for about two-thirds of all risk. Reducing de-

sign risk by choosing a better index cannot help in dealing with idiosyncratic risk. The

policy imperative would be to keep the aggregation (i.e, region R) as small as possible

to minimize idiosyncratic risk.

The fact that index insurance can at best deal with aggregate risk suggests

that traditional mechanisms of informal insurance would continue to be important in

dealing with idiosyncratic risk. If informal networks provide substantial insurance, it

would ameliorate the basis risk in index insurance because of idiosyncratic risk and

therefore increase the uptake of index insurance. This hypothesis was tested and con-
4This is true for all risk averse individuals with convex marginal utility. If individual and aggre-

gate shocks interact additively as in Miranda (1991), then idiosyncratic shocks have no consequence for
insurance decision although they do matter to utility (Ramaswami and Roe, 2004).
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firmed by Mobarak and Rosenzweig (2012) and Dercon et al. (2014).

This paper is about reducing the design error component of basis risk in rain-

fall insurance contracts. By considering general dependence structures, the paper opens

the door to the possibility that basis risk might vary according to the magnitude of the

loss in the index. This possibility is empirically explored by estimating copulas of the

distribution of rainfall and yields. While the analysis covers 9 crops across 311 dis-

tricts from 1966 to 2011, it is limited by the aggregation at the district level. For this

reason, the paper cannot throw light on the basis risk due to uninsured idiosyncratic

risk.5 What the research does is to examine the basis risk that arises by using a weather

index (rainfall) to measure aggregate or covariate risk. Related papers that share this

objective include Clarke (2016), Clarke et al. (2012) and Morsink et al. (2016).

While this literature provides methods to characterize basis risk, this paper

advances the research by a formal examination of tail dependence and its implications

for redesigning contracts to reduce basis risk. A small literature has begun to explore

copula based characterizations of joint distributions to explore the spatial correlations

of yield and the implications of pricing premiums (Du et al., 2017; Goodwin, 2014;

Goodwin and Hungerford, 2015). The paper extends the application of these methods

to a characterization of basis risk in rainfall insurance contracts.
5This is a limitation shared with much of the literature (e.g., Clarke, 2016) because of the absence of

farm level panel data.
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3 Background Evidence: Tail Dependence in Rainfall

In the model described in the last section, area average yield was the correct index for

local aggregate shocks. More generally, we can let

yiR = µiRηiR (7)

where the composite risk is some unspecified function of idiosyncratic and

aggregate shock. In other words,

ηiR = g(eiR, θR) (8)

The average yield is

y =
∑

(i∈R)
wiRµiRηiR (9)

Once again denoting the expected area yield µR ≡
∑
iwiRµiR, we can decom-

pose the right hand side of above as

∑
(i∈R)

wiRµiRηiR =
∑

(i∈R)
wiR(µiR − µR)(ηiR − η̄R) + µRη̄R (10)

where η̄R = ∑
iwiRηiR. If the yield risks are independent of mean yield, the
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first term is approximately zero. Hence we can approximate area average yield as

y = µR
∑

(i∈R)
wiRg(eiR, θR) (11)

In this more general model, it is no longer sufficient to represent aggregate

shocks by average yield. It also depends on the entire distribution of idiosyncratic

shocks.

In eithermodel, in so far as rainfall is only one component of aggregate shocks,

a rainfall insurance contract would suffer from design basis risk. Ideally, this should

be investigated by examining the association between area average yields and the rain-

fall index that is computed from a weather station within the region. Because of data

considerations, we estimate the tail dependence and the copulas of joint distributions

of area average yields and area average rainfall.6 However, this is not a major limi-

tation because tail dependence in the joint distribution of these averages implies tail

dependence in the joint distribution of area average yield and a rainfall index.

The reason is as follows. From other parts of the world, it has been found

that rainfalls within a region are not only strongly correlated but, in fact, are character-

ized by tail dependence (e.g., Aghakouchak et al., 2010). Thus, an association of large

deviations of area average yield with large deviations of area average rainfall automat-

ically translates to an association of large deviations of area average yield with large

deviations of a rainfall index derived from a location within that area.

To confirm the key fact of tail dependence in the distribution of rainfall in
6Clark’s (2016) computations of basis risk in weather insurance products from a state in India is also

based on associations of area average yield and area average rainfall.
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India, we use rainfall data from 137 weather stations of the Indian Meteorological De-

partment. The complete data series is available from 1966 to 2007. Rainfall is highly

seasonal, and bulk of it is received during June to October. To make rainfall series

comparable across stations and months, we standardize rainfall by months.
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Figure 1: Dependence in Pairwise Station Rainfalls

Figure 1a shows scatter plot of pair wise linear and rank correlations between

all the possible combinations of rainfall stations as a function of the distance between

them. The right panel of the figure shows the best fit curve to the rainfall station pair

correlations. These clearly show that the joint association between rainfalls at two sta-
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tions is inversely related to the distance between them. Interestingly the curve for rank

correlation is above the curve for linear correlation when two stations are close to each

other. But, the difference between the two narrows down as the distance between the

stations increases. This is an indication of tail dependence in rainfall as rank correlation

is better suited at capturing nonlinear relationships between the variables.7

Correlation is a globalmeasure of associationwhereaswe are interested in the

association between random variables when they are at their extremes. To study the

behavior of joint distribution of rainfalls at extremes we create a dataset of all possible

combinations of rainfall station pairs. Using this, for each station pair, we generate a

new dataset of lower and upper tail dependence coefficients.8

We use a nonparametric estimator of tail dependence (Frahm et al., 2005; Pat-

ton, 2013). The estimator is given as:

λ̂U = 2− log(1− 2(1− q) + T−1∑T
t=1 1{G(Y ) ≤ 1− q, F (X) ≤ 1− q})
log(1− q) , q ≈ 0 (12)

7Goodwin (2001) reports a similar finding for spatial correlations between yields.
8LetX and Y be the continuous random variables with distribution functions F andG, respectively.

Then, the lower tail dependence coefficient, λL, is the probability that one variable takes an extremely
low value, given that the other variable also takes an extremely low value. Similarly, the upper tail
dependence coefficient, λU , is the probability that one variable takes an extremely high value, given that
the other variable also takes an extremely high value. Mathematically, these can be expressed as:

λL = lim
q−→0

P (G(Y ) ≤ q | F (X) ≤ q)

λU = lim
q−→1

P (G(Y ) > q | F (X) > q)

Where both λL, λU ∈ (0, 1]. For a set of random variables to be tail-dependent the limits of the con-
ditional probabilities in above equations should be non-zero. Tail dependence coefficients are better
measures than linear correlation as they provide more detailed information on the joint dependence
structure of random variables (Patton, 2013). Since a bivariate normal distribution does not exhibit tail
dependence, the presence of tail dependence in data goes against the assumption of joint normality.
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λ̂U = 2− log(T−1∑T
t=1 1{G(Y ) ≤ 1− q, F (X) ≤ 1− q})

log(1− q) , q ≈ 0 (13)

The tail dependence statistic looks at a specific portion of tail in the joint dis-

tribution. Therefore, a threshold q needs to be specified for estimation. This choice of q

involves trade off in terms of bias in the estimate and its variance. For small (large) val-

ues of q the variance is large (small) and the bias is small (large). Note that the smaller

the value of threshold q the more extreme deviations the tail dependence statistic will

capture.

Figure 1b shows the best fitted curves for the lower and upper tail dependence

statistic for pair-wise rainfalls as a function of the distance between the stations. The

tail dependence declineswith distance, but the rate of decline is slower for lower values

of q. We model this behavior econometrically in the following way.

λij = β1Ln(Distance)ij + β2q + β3Ln(Distance)ij × q + αi + τj + εij (14)

where λij the estimated tail dependence coefficient between rainfalls mea-

sured at two stations i and j, Ln(Distance)ij is the distance in kilometers between the

two stations and q is the threshold chosen for the tail dependence statistic. The inter-

action coefficient captures the interplay between distance and extreme events. Table

1 shows the estimated coefficients from the regressions. The coefficient of the interac-
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tion term is negative and statistically significant. Since lower values of q correspond

to more extreme deviations in rainfall the analysis reveals that extreme deviations in

rainfall are more widespread as compared to moderate deviations. Hence, extreme

rainfall shocks will survive spatial aggregation in comparison to moderate shocks. If

yield across farms are dependent on local rainfall, then it will also inherit the tail de-

pendence property. The implication of this finding is that an extreme rainfall anomaly

will lead to spatially correlated crop losses.

Table 1: Extreme Events, Tail Dependence and Distance

(a) Weather station data (b) Gridded data

Upper λ̂L Lower λ̂U Upper λ̂L Lower λ̂U

log(Distance) -0.06*** -0.06*** -0.10*** -0.09***
(0.004) (0.003) (0.003) (0.002)

q 2.49*** 2.32*** 3.96*** 3.89***
(0.240) (0.205) (0.094) (0.062)

log(Distance)× q -0.31*** -0.29*** -0.50*** -0.49***
(0.035) (0.030) (0.013) (0.008)

Constant 0.53*** 0.50*** 0.81*** 0.65***
(0.027) (0.021) (0.023) (0.016)

Observations 55896 55896 381276 381276
Adjusted R2 0.48 0.47 0.67 0.68
Notes: The dependent variable are the estimated nonparametric tail dependence
coefficients. The tail dependence statistic varies between 0 and 1. The regressions
include station (grid point) fixed effects. Figure in parenthesis are standard errors
clustered at rainfall station level. Panel (a) shows results from the data on actual
rainfalls measured at 137 weather stations spread all over India. Panel (b) shows
results from the Indian meteorology department’s high resolution gridded rainfall
data based on rainfall records from 6995 rain gauge stations in India. ***, ** and *
indicate statistical significance at the 1%, 5% and 10% levels, respectively.

As a robustness check, we also test for tail dependence between the station-

level rainfall by fitting different copula models on station-pairs with distance less than

or equal 2000 kilometers. The appendix A provides details of how bivariate distribu-

tions are modeled by a copula. The paper considers the commonly used parametric

families of elliptical copulas and the Archimedean copulas. Their statistical properties

are also summarized in the appendix A. The copula is estimated by standard meth-

ods. Marginal distributions are estimated non-parametrically and substituted in the

copula. The dependence parameters are estimated in the second step. These details
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are also provided in the appendix A.

Table 2: Dependence in Pairwise Station Rainfalls

(a) Copula Models Fitted to Pairwise Rainfalls

Copula model Station pairs Percent

Gaussian 354 4.43
Clayton 437 5.46
Rotated Clayton 950 11.88
Plackett 1204 15.05
Frank 318 3.98
Gumbel 188 2.35
Rotated Gumbel 698 8.73
Student’s t 3849 48.12
Total 7998 100

(b) Estimated Tail Dependence based on Fitted Copula and Distance

Distance between pair of stations in kilometers
Copula 2-479 498-776 777-1033 1033-1287 1287-1572 1573-1999

Rotated Clayton 0.183 0.019 0.01 0.009 0.006 0.003
(0.236) (0.039) (0.02) (0.025) (0.019) (0.013)

Rotated Gumbel 0.284 0.209 0.163 0.146 0.133 0.129
Lower (0.09) (0.06) (0.043) (0.032) (0.02) (0.019)

Student’s t 0.573 0.523 0.503 0.493 0.49 0.482
(0.051) (0.034) (0.031) (0.026) (0.026) (0.024)

Total 0.353 0.336 0.292 0.237 0.194 0.172
(0.274) (0.238) (0.238) (0.236) (0.231) (0.226)

Rotated Clayton 0.126 0.064 0.026 0.017 0.006 0.003
(0.094) (0.058) (0.04) (0.031) (0.014) (0.008)

Rotated Gumbel 0.294 0.185 0.149 0.149 0.133 0.122
Upper (0.091) (0.054) (0.032) (0.037) (0.014) -

Student’s t 0.573 0.523 0.503 0.493 0.49 0.482
(0.051) (0.034) (0.031) (0.026) (0.026) (0.024)

Total 0.348 0.324 0.28 0.228 0.185 0.165
(0.276) (0.247) (0.247) (0.241) (0.235) (0.229)

Note: Standard deviation in parenthesis.

The Students t copula is the best fit for almost half of the station-pairs, fol-

lowed by Plackett and rotated Clayton copula (table 2a). The Students t copula exhibits

both upper and lower tail dependence. This indicates that rainfall in general exhibits

a stronger association in case of both extremely low and extremely high deviations

from the normal. The mean values of the tail dependence coefficients based on the

copula parameter for all the station-pairs are presented in table 2b and show a declin-

ing strength of association when the distance between two stations increases. This is

similar to the pattern observed in the non-parametric tail dependence coefficients.

18



4 The Joint Distribution of Average Area Yields and Av-

erage Area Rainfall

We now turn to the association between average area yield and average area rain-

fall. District yields are collected from the district database of the International Crops

Research Institute for the Semi-Arid Tropics ICRISAT (http://vdsa.icrisat.ac.in/vdsa-

database.htm) that is compiled from various official sources. To maintain consistency

and comparability of time series across districts, data of the bifurcated districts is re-

turned to the parent district based on the district boundaries in 1966.

The database covers 15 major crops across 311 districts in 19 states from the

year 1966-67 to 2011-12. India receives 85% of its annual rainfall during the monsoon

months of June to September. A rainfall insurance contract is meaningful therefore

for crops grown during this period. These are called the kharif season crops (June

to October). In the data set, these crops are Maize, Cotton, Sorghum, Finger millet,

Pigeon pea, Soybean, Pearl millet, Groundnut and Rice. Crop yields typically exhibit

significant upward trends overtime due to technological changes. Yield deviations are

estimated by fitting a linear trend to log yields of each crop of each district.

The high resolution gridded rainfall data from the Indian Meteorological De-

partment is used to construct total kharif season rainfall as cumulative rainfall for the

months from June to October. The cumulative seasonal rainfall is transformed to stan-

dardized deviations from their long term normals.

Table 3 presents coefficients of linear and rank correlation between yield and

rainfall deviations. As expected, both measures show a statistically significant posi-
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tive association between yield and rainfall deviations, despite some difference in their

magnitude. Figure 2 shows the scatter plot of rainfall and yield deviations. Figure 2a

shows scatter plots of yield and rainfall deviations along with the linear fit.

Table 3: Linear and Rank Correlation Between Yield and Rainfall Deviations

(1) (2)
Crops Linear correlation Rank correlation

Maize 0.023 0.004
(0.009) (0.01)

Cotton 0.072 0.073
(0.012) (0.015)

Sorghum 0.104 0.109
(0.01) (0.01)

Finger millet 0.107 0.086
(0.014) (0.015)

Pigeonpea 0.145 0.131
(0.009) (0.009)

Soybean 0.169 0.122
(0.018) (0.017)

Pearl millet 0.183 0.183
(0.011) (0.011)

Groundnut 0.177 0.18
(0.01) (0.01)

Rice 0.277 0.267
(0.008) (0.009)

Note: Bootstrapped (200 replications) standard errors in
parenthesis.

A crude test for the presence of tail dependence in a pair of variables is to

examine the scatter plot of these variables (after transforming to uniform scores based

on the empirical distribution) for clustering at the extremes (Joe, 2014). For different

values of q we can also compute conditional quantile dependence probabilities for the

lower (pL) and higher (pU) extremes of the transformed variables as:

pL = 1
Tq

n∑
(t=1)

1{UY t ≤ q | UXt ≤ q} (15)

pU = 1
T (1− q)

n∑
(t=1)

1{UY t ≤ q | UXt ≤ q} (16)
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(a) Scatter Plots of Yield and Rainfall Deviations

(b) Scatter Plots of Ranks of Yield and Rainfall Deviations

(c) Kernel Density Plots of Ranks of Yield and Rainfall Deviations

Figure 2: Joint Distribution of Yield and Rainfall Deviations
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Where UY t and UXt are the scores of Y and X based on their empirical distri-

bution.

In figures 2b and 2cwe present the scatter and bivariate kernel density plots of

the rank-based empirical marginal distribution of yield and rainfall deviation. We ob-

serve clustering of rank scores (for yield and rainfall deviations) in the lower-left corner

of scatter plots for many of the crops. Such a clustering corresponds to extreme short-

falls in yield and rainfall, and implies greater probability of simultaneous occurrence

of these events.

The scatter plots of rank-based empirical distributions indicates that associ-

ation between yield and rainfall index may not be linear. Therefore, we test for the

presence of tail dependence in their joint distribution using the conditional quantile

dependence probabilities. Figure 3 shows estimated lower tail (panel 3a) and upper tail

(panel 3b) quantile dependence plots; and the difference between the two (panel 3c).

For comparison we also present the quantile dependence from the moments matched

bivariate normal distribution as dashed line in this figure. For all crops the quantile de-

pendence probability at the lower tail of the joint distribution is greater than the same

exhibited by normal distribution. This again is evidence of lower tail dependence in

crop yield and rainfall deviations. The quantile dependence plots for the upper tail

don’t show any evidence of tail dependence in the joint distribution of yield and rain-

fall distribution. We also find strong evidence that the joint distribution of crop yield

and rainfall deviations exhibit asymmetric tail dependence. The difference between the

upper and lower quantile dependence is statistically significant and is greater at lower

quantiles (figure 3c). These results clearly reveal that the bivariate normal distribution
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is unsuitable to model the joint distribution of yields and rainfalls.

Table 4: Log Likelihood from Different Copula Models

Crops Gaussian Clayton Rotated
Clayton

Plackett Frank Gumbel Rotated
Gumbel

Student’s t

Cotton 20.4 33.7 8.3 18.8 18.4 -12.7 16.0 24.3
Finger millet 27.9 51.5 3.2 31.8 31.1 -9.8 43.3 29.9
Groundnut 183.8 254.9 56.6 175.3 171.8 92.0 235.2 196.9
Maize 3.5 31.4 -0.01 3.6 3.5 -138.5 -31.6 11.9
Pearl millet 165.8 224.7 52.7 154.9 152.0 81.2 214.7 173.6
Pigeon pea 124.8 172.6 29.1 123.9 122.9 39.8 151.9 125.8
Rice 548.3 680.9 204.2 544.4 533.5 334.4 665.8 567.6
Sorghum 68.4 125.9 10.8 56.8 55.7 -8.8 104.0 76.9
Soybean 43.6 68.4 7.5 48.5 48.1 14.0 63.2 45.8
Note: Log likelihood values estimated from copula models.

Weuse copula functions to capture the asymmetric dependence between yield

and rainfall deviations by fitting copulas to rank-based empirical marginal distribu-

tions of yield and rainfall deviations.9 Based on the log likelihood values, the Clayton

copula is the best model to describe the dependence between yield and rainfall de-

viations (Table 4). This is not surprising as Clayton copula exhibits only lower tail

dependence and no upper tail dependence. The worst performing copula models are

one with zero lower tail dependence and allow only upper tail dependence like Gum-

bel and rotated Clayton. Table 5 presents the parameters of the Clayton copula with

bootstrapped standard errors and lower tail dependence based on the fitted copula

parameter.

The estimated copula density for different crops is presented in Figure 4. As

expected, all crops show significantly higher density at the lower tail. This further

confirms that the association between yield and rainfall deviations is stronger at the

lower tail. This means when rainfall is abnormally low, yield losses are widespread.

Therefore, the basis risk is low for extreme shortfall in rainfall.
9As mentioned earlier, the procedure used to estimate bivariate copulas is explained in Appendix A.
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Table 5: Clayton Copula Model Parameter Estimates

Crops Parameter
Estimates

Standard
errors

Tail
dependence

Cotton 0.107 0.014 0.0015
Finger millet 0.158 0.018 0.0125
Groundnut 0.260 0.013 0.0695
Maize 0.074 0.011 0.0001
Pearl millet 0.271 0.015 0.0776
Pigeon pea 0.201 0.012 0.0319
Rice 0.415 0.014 0.1878
Sorghum 0.176 0.012 0.0195
Soybean 0.246 0.025 0.0597

Figure 4: Estimated Copula Density for Crops

25



As a robustness check, we fit all the selected eight copula models to each dis-

trict that has at least 40 data observations. Based on the log likelihood values and the

AIC criterion, we choose the one that best describes the dependence. Table 6 summa-

rizes the results. For example, in the case of rice Clayton copula gives best fit for 40

percent of the 274 rice growing districts. Student’s t copula is the next best. Across all

crops about 70%of the cases are accounted by either theClayton copula or the Student’s

t copula. These findings clearly indicate nonlinearity in association between weather

and yield risk and have implications for the demand for insurance and thus, its design.

Table 6: Percent Districts with Best Fit Copulas

Crops Gaussian Clayton Rotated
Clayton

Plackett Frank Gumbel Rotated
Gumbel

Student’s t Total

Cotton 12 37 10 7 7 3 2 44 122
(9.84) (30.33) (8.2) (5.74) (5.74) (2.46) (1.64) (36.07) (100)

Finger millet 2 28 5 3 5 0 4 24 71
(2.82) (39.44) (7.04) (4.23) (7.04) (0) (5.63) (33.8) (100)

Groundnut 9 77 8 15 8 3 11 57 188
(4.79) (40.96) (4.26) (7.98) (4.26) (1.6) (5.85) (30.32) (100)

Maize 17 68 13 21 8 4 6 113 250
(6.8) (27.2) (5.2) (8.4) (3.2) (1.6) (2.4) (45.2) (100)

Pearl millet 3 78 7 9 6 3 6 45 157
(1.91) (49.68) (4.46) (5.73) (3.82) (1.91) (3.82) (28.66) (100)

Pigeon pea 12 88 21 15 16 6 7 53 218
(5.5) (40.37) (9.63) (6.88) (7.34) (2.75) (3.21) (24.31) (100)

Rice 13 110 10 12 24 8 34 63 274
(4.74) (40.15) (3.65) (4.38) (8.76) (2.92) (12.41) (22.99) (100)

Sorghum 6 73 8 14 8 2 7 80 198
(3.03) (36.87) (4.04) (7.07) (4.04) (1.01) (3.54) (40.4) (100)

Soybean 0 24 2 2 6 0 2 5 41
(0) (58.54) (4.88) (4.88) (14.63) (0) (4.88) (12.2) (100)

Total 74 583 84 98 88 29 79 484 1519
(4.87) (38.38) (5.53) (6.45) (5.79) (1.91) (5.2) (31.86) (100)

Note: Row percentages in parenthesis.
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5 Implications for Rainfall Insurance

5.1 Basis Risk

Our findings show that the joint density of yield and rainfall exhibit lower tail depen-

dence, i.e. a stronger association between yield and rainfall when rainfall is abnormally

low. This implies that the basis risk varies across the joint distribution of yield and in-

dex. This opens up the possibility of designing insurance such that it covers the losses

with the least basis risk. Here, we analyze the implications of these findings for the

demand and design of index insurance.

Assume that a farmer’s yield q is a random variable with distribution function

g(q). The payout from one unit of rainfall based insurance contract is given by

I = Max{R̂−R, 0} (17)

whereR is the rainfall index with distribution function h(R) and R̂ is the rain-

fall threshold set by the insurance selling agency. Lower is the threshold, greater is the

deductible in the insurance payouts. The contract trigger’s payouts only if actual rain-

fall falls below R̂. The implicit assumption in offering such a contract is that farmers’

yield and the rainfall index are correlated such that in periods of low rainfall crop yields

will also be lower. The actuarially fair price P of such a contract is just the expectation
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of I .

P =
∫ R̂

0
(R̂−R)h(R)dR (18)

The net profits of a farmer purchasing a rainfall insurance contract can be

written as

π = q + α(I −mP ) (19)

where α is the number of insurance units purchased and m is the mark-up

over actuarially fair insurance. We want to find the optimal value of α that maximizes

the expected indirect utility.

Maxαη(α) ≡ Eu(q + α(I −mP )) (20)

where u(.) is the utility function of the farmer with u′(.) > 0 and u′′(.) < 0.

Starting from no insurance, the increment to expected utility because of insurance is

given by

η
′(α) |α=0= Eu

′(q)(I −mP ) (21)

28



Or,

η
′(α) |α=0=

∫∫
u
′(q)(I −mP )h(R | q)g(q)dRdq (22)

where h(R | q) is the density of rainfall conditional on yield. This can be

rewritten as

η
′(α) |α=0=

∫
u
′(q)[

∫
(I −mP )h(R | q)dR]g(q)dq (23)

The term inside the square brackets is nothing but E(I | q) −mP . Hence we

have

η
′(α) |α=0= Eu′(q)(E(I | q)−mP ) (24)

From the above it can be seen that the insurance demand is zero if E(I | q) ≤

mP , for all values of q. This result is a restatement of a theorem inClarke (2016). Clarke

defines

κ(q) = E(I | q)
mP

= Expected claim payment over yield distribution
Commercial premium

(25)

The ratio basically reflects the average amount a farmer gets back as claims per

dollar paid as commercial premium. He shows that if κ(q) ≤ 1 over the entire yield
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distribution then α = 0, for a risk-averse individual. In our model, this result follows

from (24).

Clarke et al. (2012) use the payout structure of 270 weather based crop in-

surance products sold to Indian farmers in one state in one year and combine it with

historical data to simulate payouts over the period 1999-2007. Their work finds the

ratio κ(q) to be almost flat over the entire yield distribution. The ratio is below 1 for

most values of q and is barely above 1 for very low levels of q. It follows then that the

basis risk in these contracts is so large that it would be optimal not to purchase them.

Morsink et al. (2016) proposed that the ratio defined in (25) should be used as ameasure

of reliability of weather insurance contracts and called it the catastrophic performance

ratio. They further suggested that the ratio could be used to "improve the quality of

products, protect consumers, and reduce reputational risk".

We use the catastrophe performance ratio to examine how tail dependence

matters to basis risk. A hypothetical rainfall insurance contract of the form in (17) is

considered. The payoffs are simulated using 10,000 draws of rainfall and yield from a

Gaussian copula and from a copula exhibiting lower tail dependence. The correlation

between the two variables is held constant across the two copulas. The comparison of

the performance ratio across the two copulas is, then, revealing about the effect of tail

dependence.

The exact procedure is as follows. For both these copulas, the marginal dis-

tribution of yield and rainfall are assumed to be normal with a mean of 2000 and stan-

dard deviation of 300. In the last section, the best fit copula to the joint distribution of

rice yields and rainfall was found to be the Clayton copula with a parameter of 0.42.
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The marginal distributions are combined in a Clayton copula with a parameter of 0.42

to generate 10,000 observations of yield and rainfall. These observations are used to

compute the insurance and payoffs. The linear correlation between rainfall and yield

draws from the Clayton copula is combined with the assumed marginal distributions

to generate another 10,000 observations from a bivariate normal distribution.

Thus, we have two empirical joint distributions such that they share the same

marginal distributions and the same correlation between rainfall and yield. The only

difference is that yield and rainfall index simulated from Clayton copula exhibit lower

tail dependence, while the other does not.
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Figure 5: Expected Claims to Commercial Premium Ratio: All India

Figure 5a plots the nonparametrically estimated relationship between claims

to commercial premium ratio and yield from the simulated data, i.e.

I(q) = E

(
Max{R̂−R, 0}

mP
| q
)

(26)

where the insurance contract parameter R̂ is assumed to be one standard de-

viation below the mean rainfall and m is assumed to be 1.56 times the actuarially fair
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premium.10 At this premium level, the catastrophic performance ratio is below 1 for the

rainfall insurance contracts considered by Clarke et al. (2012). This is not true, however,

for the payouts from rainfall contracts in Figure 5a The ratio from the normal distribu-

tion and from Clayton Copula are above 1 for low output levels. There is, however

a substantial divergence between the normal distribution and the Clayton copula at

these low output levels. The catastrophic performance ratio is substantially higher for

the Clayton copula. Thus, by the measures proposed byMorsink et al. (2016), account-

ing for tail dependence markedly reduces basis risk.

Figure 5b plots the Clayton copula based catastrophic performance ratio for

different levels of the deductible. R̂ is chosen to be either the mean, or 0.5 standard

deviation below the mean or 1 standard deviation below the mean. It can be seen that

as the deductible rises (i.e., R̂ falls) so does the basis risk. Catastrophic insurance carries

the least basis risk.

5.2 Optimal Insurance

In figures 5a and 5b, the Clarke condition that is sufficient to ensure zero insurance

demand is not met. (E(I | q) − mP ) is above 1 for low realizations of output but

below 1 for high realizations of output. This does not mean that insurance demand is

necessarily positive. That depends on the evaluation of equation (24) which depends
10Clarke (2016) based on 270 weather based crop insurance products sold to Indian farmers report’s

that a markup greater than 1.56 times the fair premium will lead to no demand for rainfall insurance.
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on the extent of risk aversion. (24) can also be written as

η
′(α) |α=0= Cov(u′(q), E(I | q))− (m− 1)PEu′(q) (27)

Risk aversion and the expected shape of the regression E(I | q) guarantees

the first term to be positive. When insurance is actuarially fair, the second term is zero

and it is optimal for farmers to buy some insurance. When m > 1, the answer would

depend on risk aversion and the mark-up over the fair premium.

To investigate these issues, we consider data from two districts in India, Ma-

habubnagar and Anantapur, that have been heavily researched for the extent of local

risk sharing (e.g., Townsend, 1994). These districts are characterized by dependence on

rainfed agriculture and vulnerability to droughts. Households in these districts have

also been recently surveyed for their risk aversion using Binswanger type lotteries (Bin-

swanger, 1980; Cole et al., 2013) and we use those estimates.

Using the procedures in appendix A, a best fit copula model is selected for

rice yields and rainfall in each of the two districts. Table 7 displays the results. Unlike

the exercise that generated figures 5a and 5b, we do not assumemarginal distributions

of rainfall and yield to be normal. Instead, we consider various parametric form and

choose the best fit functional form (Table 7).11 Rainfall is log-normal in both districts.

Yield follows a Weibull distribution in Anantapur and follows a gamma distribution

inMahabubnagar. Plots of estimated parametric distributions against the observations

are presented in appendix B.
11The distributions that were considered were Gamma,Weibull, log-normal and Gumbel. All of these

are two-parameter distributions and the parameterswere estimated bymaximum likelihoodprocedures.
The distribution that maximizes the log likelihood is picked as the marginal distribution.

33



Table 7: Best Fit Parametric Marginal Distributions and Copula Models

Parameter estimates

(a) Fitted marginal distribution of cumulative rainfall
Anantapur Log normal 6.06 0.28
Mahabubnagar Log normal 6.38 0.24
(b) Fitted marginal distribution of de-trended recentered yield
Anantapur Weibull 2961.8 15.0
Mahabubnagar Gamma 126.7 21.3
(c) Copula model of joint distribution of yield and rainfall
Anantapur Rotated Gumbel 1.187
Mahabubnagar Clayton 1.127

These marginal distributions are combined in the appropriate copula (as in

Table 7) to generate 10,000 observations of yield and rainfall. These observations are

used to compute the insurance and payoffs. The linear correlation between these rain-

fall and yield draws is combined with the selected marginal distributions to generate

another 10,000 observations from a Gaussian copula.

Figures 6a and 6b show the catastrophe performance ratios for these districts.

These pictures are very much like Figures 5a and 5b. Once again, basis risk is much

lower relative to a Gaussian copula. Further, basis risk falls with a larger deductible.

Next we move to an evaluation of equation (24). For a constant risk aversion

utility function with parameter γ (24) becomes

η
′(α) |α=0= Eq−γ(E(I | q)−mP ) (28)

Based on thework of Cole et al. (2013), the risk aversion parameter is assumed

to be 0.57. The above equation can be used to compute themark-up over the actuarially

fair premium for which insurance demand is positive. From the results displayed in

Figure 7, it can be seen that the m that extinguishes insurance demand is higher for a
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(a) Expected Claims to Premium Ratio With and Without Tail Dependence
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(b) Expected Claims to Premium Ratio With Different Trigger Thresholds

Figure 6: Expected Claims to Premium Ratio for Two Districts of Andhra Pradesh
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tail-dependent copula as compared to a Gaussian copula. This is simply a reflection of

the lower basis risk that comes with lower tail dependence. A second finding of Figure

7 is that themaximummark-up for which insurance demand is positive is higher when

the deductible is larger. This again is a reflection of the earlier figure 6b that showed

the basis risk is lowest in contracts with the smallest rainfall threshold.
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Figure 7: Markups at Which Demand for Insurance Cover is Zero

For the constant relative risk aversion utility function, the optimal insurance

units can be solved from

η
′(α) = E(q + α(I −mP ))−γ(I −mP ) = 0 (29)

The payouts and the premium that were simulated to compute the catastro-

phe performance ratios can also be used to evaluate (29). We continue to use γ = 0.57.

Optimal insurance cover is computed with and without tail dependent yield and rain-

fall distribution and for insurance contracts that vary according to the index threshold
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value that triggers payout. The results are displayed in Figure 8 where the computa-

tions assumem = 1. What is noteworthy about the results is that the optimal insurance

cover is much larger with a tail dependent copula than with a Gaussian copula. This

is consistent with the lower basis risk with a tail dependent copula.
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Figure 8: Optimal Cover for Actuarially Fair Contract Under Different Thresholds

The fact that contracts with the lowest threshold (highest deductible) have the

lowest basis risk and the greatest demand for insurance, does not, however, mean that

farmers necessarily prefer these contracts to all others. Figure 9 evaluates the expected

utility for the optimal levels of insurance for actuarially fair premiums. This shows

that the optimal threshold is 0.5 standard deviation below the mean for Anantapur

while it is the mean yield for Mahabubnagar. For the given risk aversion parameter,

it is optimal to accept higher basis risk in exchange for a greater insurance protection.

However, if insurance is actuarially unfair, then as Figure 8 showed, it is more likely

that the contracts with the least basis risk are favored by farmers.
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Figure 9: Expected Utility with Optimal Cover for Different Thresholds

6 Conclusions

Although cost effective and free from moral hazard and adverse selection, the index

based crop insurance products have seen poor uptake because of imperfect associa-

tion between index and crop loss that reduces the value of insurance and therefore its

demand.

We find the association between crop yield and rainfall index characterized by

the statistical property of ’tail dependence’. This implies that the associations between

yield losses and index are stronger for large deviations than for small deviations. The

most important implication of our findings is that for farmers the utility of index-based

insurance relative to actuarial cost is more during extreme or catastrophic losses than

for insurance against all losses. The opens up the issue of evaluating the cost effective-

ness of an insurance product that limits itself to compensation against extreme events.

Our findings also generates a need to systematically evaluate the basis risk and uptake

for index insurance products that differ with respect to the contract threshold.

The idea behind heavily subsidizing insurance premium is that subsidies are
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essential for widespread uptake of insurance products. If so, the question is: What is

the best way to provide subsidy? Our analysis shows that crop losses are widespread

during extreme climatic events such as droughts. This implies that a considerable pro-

portion of farmers would benefit from a program that covers their risks during an ex-

tremeweather event. In other words, any form of insurance that protects from extreme

losses is likely to be favored by a majority of the farmers. The actuarial cost of such an

insurance scheme will be lower compared to a normal insurance; hence less burden on

government exchequer. Indeed, a policy that completely subsidizes extreme loss in-

surance could possibly be revenue neutral relative to an insurance program that covers

crop losses based on rainfall-deficit.

Extreme loss insurance programs are likely to bemore useful to local aggrega-

tors of risk such as banks, producer companies, cooperatives, agri-business firms and

local governments. There is a very established protocol for drought relief expenditures

by the government. However, its timeliness is often questioned because of many lay-

ers of permissions required for such expenditures. On the other hand, an extreme loss

insurance program offers the benefits of drought relief but in a timely manner.

We note that farmers may not purchase insurance for other reasons as well

including poor understanding of the product, credit constraints, low trust of the insur-

ance seller, and optimism about yields. If these are binding constraints, then again a

reduction in basis risk may not impact the demand for insurance.

Finally, we wish to point out that tail dependence is unlikely to be India spe-

cific since it flows from the nature of spatial associations of weather. Therefore, al-

though our results are based on Indian data, the general lessons are available for other
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countries too.
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Appendix

A Copula Estimation

We use copula functions to estimate the joint distribution of yield and rainfall. The

copula function provides a flexible way to bind the univariatemarginal distributions of

random variables to form a multivariate distribution and can accommodate different

marginal distributions of the variables (Nelsen, 2006; Trivedi and Zimmer, 2007). A

two-dimensional copula can be defined as a function C(u, v) : [θ, 1]2 −→ [0, 1] such

that

F (Y,X) = P [G(Y ) ≤ G(y), F (X) ≤ F (x)] (30)

F (Y,X) = C(G(Y ), F (X); θ) (31)

Where θ represents the strength of dependence and G(.) and F (.) are the

marginal distribution functions of Y and X respectively. The joint probability density

function can be expressed as:

c(G(Y ), F (X); θ) = ∂C(G(Y ), F (X); θ)
∂G(Y )∂F (X) = C(G(Y ), F (X); θ)g(Y )f(X) (32)
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Sklar (1959) has shown that for a continuous multivariate distribution, the

copula representation holds for a unique copula C. This construction allows us to es-

timate separately the marginal distributions and the joint dependence of the random

variables. There are several parametric families of copula available in the literature.

The frequently used ones are the elliptical copulas and the Archimedean copulas. Note

that the nature of dependence among the random variables will depend on the copula

function chosen for estimation. The statistical properties of the copulas that we use in

this paper are given in table 8.

42



Table 8: Some Common Copula Models

Copula models Functional forms Dependence Parameter space Lower Upper
parameter tail dependence tail dependence

Gaussian ΦΣ(Φ−1(u),Φ−1(v); ρ) ρ (−1, 1) 0 0
Clayton (u−θ + v−θ − 1)− 1

θ θ (0,∞) 2− 1
θ 0

Rotated Clayton Same as Clayton with 1− u and 1− v θ (0,∞) 0 2− 1
θ

Plackett 1+(θ−1)(u+v)−
√

[1+(θ−1)(u+v)]2−4θ(θ−1)uv
2(θ−1) θ (0,∞) 0 0

Frank −1
θ
log

(
1 + (exp−θu−1)(exp−θu−1)

(exp−θ −1)

)
θ (−∞,∞) 0 0

Gumbel exp
{
− (−loguθ − logvθ) 1

θ

}
θ (1,∞) 0 2− 2− 1

θ

Rotated Gumbel Same as Gumbel with 1− u and 1− v θ (1,∞) 2− 2− 1
θ

0

Student’s t tν,Σ(t−1
ν (u), t−1

ν (v); ρ) ρ, ν (−1, 1)× (2,∞) 2× tν+1

(
−
√

(ν + 1)
√

(1−ρ)√
(1+ρ)

)
2× tν+1

(
−
√

(ν + 1)
√

(1−ρ)√
(1+ρ)

)
Note: Table presents some common parametric copula models with their functional forms, parameter spaces and the expression for tail dependence coefficient implied by the specific copula model.
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We use two-step maximum likelihood procedure to estimate the copula func-

tion wherein the marginals are estimated in the first step, and the dependence in the

second step by substituting the estimated marginal distributions in the selected copula

function (Trivedi and Zimmer, 2007). A non parametric estimator is used to estimate

the univariate marginal distribution for crop yield deviations and rainfall deviations.

This makes the model semi parametric. Estimation of copula using non parametric

distribution does not affect the asymptotic distribution of the estimated copula depen-

dence parameter (Chen and Fan, 2006).

A simple maximum likelihood estimator can be used to choose the best fitting

copula and estimate the dependence parameter (Patton, 2013). Selection of the copula

model can be made based on the Akaike or (Schwarz) Bayesian information criterion

(AIC). If all the copulas have equal number of parameters, then the choice of model

based on these criteria is equivalent to choosing copula with highest log likelihood

(Trivedi and Zimmer, 2007). The log likelihood function of the copula can be written

as:

L(θ) =
N∑
i=1

LnC(ÛXi , ÛYi ; θ) (33)

Where ÛXi and ÛYi are the nonparametrically estimated marginal distribu-

tions. Copula parameter can be estimated bymaximizing the likelihood function using

numerical methods. This procedure gives the "Inference Functions for Margins" (IFM)

estimator as θ is conditional on themodel that is used to transform the rawdata (Trivedi

and Zimmer, 2007; Patton, 2013). All copula models and tail dependence statistics are

estimated using Patton’s (2013) procedure and MATLAB codes.
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B Estimated Marginal Densities

Figure 10: De-trended yield
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Figure 11: Cumulative Seasonal Rainfall
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