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Altruism and Insurance In Costly
Solidarity Networks1

Abstract. We model limited commitment informal insurance networks among
altruistic individuals where the impurely altruistic gains to giving to others di-
minish with the number of transfers one makes; giving is costly, and stochastic
income has both publicly observable and unobservable components. Contrary
to the canonical informal insurance model, in which bigger networks and ob-
servable income are preferable, our model predicts that unobservable income
shocks may facilitate altruistic giving that better targets the least well off
within one’s network and that too large a network can overwhelm even an
altruistic agent to cease giving. We test the empirical salience of the model us-
ing a unique data set from southern Ghana. We analyze transfer flows among
households by coupling observations of gift-giving networks with experimental
cash windfall gains - randomized between private and publicly observable pay-
outs - repeated every other month for a year, and find evidence supporting the
model predictions.
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1 Introduction

Social solidarity networks have long been understood to play a central role in village economies.

There can be both altruistic and self-interested drivers behind such networks’ functioning

(Ligon and Schechter (2012)). Although the possibility of altruism has been accommodated

in some work within that literature (notably Foster and Rosenzweig (2001)), at least since

Popkin (1979) and Posner (1980), the dominant framework for social scientists’ understand-

ing of transfers within social networks has rested on self-interested dynamic behavior, com-

monly framed as self-enforcing informal insurance contracts (Fafchamps, 1992; Coate and

Ravallion, 1993; Townsend, 1994). In this tradition, larger networks expand one’s social in-

surance pool, thereby stabilizing consumption, provided that income realizations are publicly

observable so as to ensure enforceability of the informal insurance contract (Ambrus et al.,

2014). A nice implication of this framework for public policy is that social networks should

(at least partially) correct targeting errors in publicly observable transfer programs, as non-

recipients who have suffered adverse shocks will approach recipients within their network to

share their windfall gains (Angelucci and De Giorgi, 2009).

A related but distinct literature emphasizes the dark side of sharing within social net-

works, as social pressures can place significant demands on those who enjoy income growth,

discouraging investment and potentially even trapping households in poverty (Platteau, 2000;

Sen and Hoff, 2006; Jakiela and Ozier, 2016; Squires, 2017). This contrary perspective raises

important questions about prospective limits to the value of extensive social networks and

of full transparency of individual outcomes.

In this paper we integrate these two streams of thought on the roles social solidarity

networks play in village economies. We follow Foster and Rosenzweig (2001) in modeling

limited commitment risk pooling allowing for altruistic preferences. Our model includes two

key refinements, however, reflecting how our research subjects in rural Ghana describe to

us the operation of sharing arrangements within their social networks. First, we model an

impure, ’warm glow’ component to altruistic preferences (following Andreoni (1990)) that

diminishes with the more gifts one gives within one’s network. While individuals might vary

in the extent of their altruism, everyone faces some limit to the pleasure they derive from

beneficence. If giving is costly and the returns to giving diminish, there then emerges some

point at which even altruistic individuals cease giving because of the social taxation pressures

they face. We term this the ’shutdown hypothesis’. Second, altruistic individuals would

like to target their giving toward the neediest members of their social network. But when

stochastic income realizations are publicly observable, the demands of less needy members
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of the solidarity network to share in a windfall can crowd out giving to those with greater

need. These two key refinements thereby overturn two key implications of the canonical

model of informal insurance - that a larger network and observable income are better -

and reflect findings from the literature on social taxation. Nonetheless, within the links

that endogenously remain, full risk pooling should obtain, so the social solidarity network

retains its key function in distributing stochastic income realization across a network, thereby

smoothing consumption.

We take these findings to unique data from southern Ghana, where over the course

of a year we randomized private and public bimonthly cash payments to subjects whose

gift networks we had previously mapped. These exogenous income shocks enable us to test

the predictions of our analytical model. We rely primarily on regressions of giving within

subjects’ social networks as function of exogenous (randomized) private and public winnings.

We corroborate those findings with regressions of how subjects’ consumption varies with

winnings within one’s network and with dyadic regressions reflecting the flows between any

two subjects.

Several striking empirical findings emerge, each consistent with the predictions of the

analytical model but not with the canonical model of informal insurance. First, the average

size of gifts one gives within one’s network are larger for private than for public windfall

gains. This indicates more targeted giving when altruistic behavior dominates because the

unobservability of one’s winnings attenuates network demand to honor the informal insurance

contract. Furthermore, this confirms the existence of altruistic motives in social solidarity

networks. In the absence of altruistic preferences and observability of the income shock, one

would never share private winnings. Second, and relatedly, those with unobservable income

gains target their giving to the neediest households within their networks. Private, altruistic

giving is more sensitive to correcting maldistribution than is public sharing. Third, the

number of gifts given is larger for public than for private winnings, consistent with greater

network demand for transfers. Fourth, the shutdown hypothesis appears to hold. Winners

of publicly revealed cash prizes cease making transfers at all when they have too large a

network. Finally, we show that, within these gift networks, we can reject the null hypothesis

of full risk pooling, indicating that gift-giving is less likely to follow from insurance motives

relative to altruism.

Consistent with the literature on social taxation (Platteau, 2000; Sen and Hoff, 2006;

Jakiela and Ozier, 2016), these results highlight the limits to social networks as channels

for managing income shocks as well as the trade-offs inherent to transparency in transfer

programs. Although observability of income is essential in informal insurance arrangements
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among purely self-interested agents, observability may impede altruistic agents’ ability to

focus their giving on the most needy as they are compelled to respond to demands for

assistance from the less needy within their network.

Our findings have practical policy implications, especially for cash transfer programs

which have, over the past decade or two, become the foundation for social protection pro-

grams throughout the developing world. For example, if networks are sufficiently well-

connected and populations are motivated by the well-being of others in the network, then

transparency may limit the efficiency of redistributive behaviors within networks. Angelucci

et al. (n.d.) show that Progresa transfers are pooled by family networks to finance consump-

tion and investment and Advani (2017) shows using experimental data from Pakistan that

poverty traps can exist at the network level. Simons (2016) shows that community targeting

of a social safety net program is pro-poor relative to centralized targeting. These results sug-

gest that communities in many parts of the world have intimate knowledge of their members’

needs and can potentially allocate resources more efficiently than state institutions (Alder-

man, 2002; Bowles and Gintis, 2002). However, Vanderpuye-Orgle and Barrett (2009) warn

that within-community transfers may not benefit “socially invisible” community members —

this evidence may, however, be taken with the caveat that exclusion from risk-sharing social

networks may also be driven by reputation or punishment for past infringements within the

community.

Combined with the above studies, our evidence suggests that governments should tread

a careful path when considering the transparency of social safety net transfers. Transparent

cash transfers can decrease the opportunity cost of default from potentially efficient risk-

sharing networks while also providing a means of triggering social taxation that may deter

investment. At the very least, governments should not treat communities as a “black box”

and should make efforts to understand and measure the quality of social connections and

degree of participation in social networks.

This paper proceeds by first discussing the risk-sharing model that generates the pre-

dictions we test in the data in section 2. Then, we discuss the data in section 3. In section

4 we present results from our preferred specification and conduct analysis of dyadic data

in section 5. Section 6 concludes by summarizing our findings and providing pathways for

future research.
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2 The Model

Environment. We introduce 2 agents, i = {1, 2} receiving stochastic incomes, yi(st) ≥ 0

that depend on the state, st, realized in period t — a sequence of the state history is

characterized by ht = {s1, s2, ..., st}.2 We model history-dependent transfers from household

1 to household 2, τ(ht), when both households have gift-networks with g1 = g2 ≥ 1 other

households. Depending on the realization of a particular state, households will receive gipi(st)

different gift-requests from their network, where 0 ≤ pi(st) ≤ 1 reflects the unconditional

probability that a given household in one’s network will request a transfer in period t. To

focus attention on transfers between households 1 and 2, we assume that net transfers with

all other households in one’s network equals zero for now. Thus, net income for household 1

is y1(st)−τ(ht) and net income for household 2 is y2(st)+τ(ht). If τ(ht) > 0, then household

1 (2) is a net sender (receiver) of transfers. Otherwise, if τ(ht) < 0 household 1 (2) is a net

receiver (sender) of transfers.

Preferences. Following Foster and Rosenzweig (2001), we assume households hold altruistic

preferences towards each others’ single-period utilities. We introduce individual i’s altruistic

preferences by assuming that household single-period utility is separable in own and other

household consumption. Single-period utility for household 1 is reflected in the following

equation:

u1(c
1) + γ1(g1, st)u2(c

2)

such that 0 ≤ γ1(g1, st) ≤ 0.5
(1)

and single-period utility for household 2 can be written in symmetric fashion. u1() and

u2() are increasing and concave γ1(g1, st) represents the altruism weight household 1 holds

towards 2.

We diverge from others in that we characterize altruistic preferences as a function of a

household’s “altruism stock” and their transfer-network size. The altruism weight diminishes

as a household’s period-specific gift-requests increase, which in turn rely on a household’s

gift-giving network size, gi, and the probability that it will be requested to provide transfers

to other households, reflected in pi(st). Specifically, altruism weights consist of a fixed, or

“pure,” component, γ̄F1 ≥ 0, and a warm-glow (Andreoni, 1990), or “impure,” component

γ̄W1 ≥ 0. Again for household 1, we represent these components of altruism in the following

2The assumption of stochastic exogenous income is reasonable in our empirical context since we distribute
cash prizes randomly across the sample.
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manner:

γ1(g1, st) = min{γ̄F1 +
γ̄W1

g1 · p1(st)
1(τ(ht) 6= 0), γ1} (2)

where 1(·) is an indicator function equal to one when there is a transfer between households

1 and 2, and γ1 places an upper bound on household 1’s altruism weight towards household

2 so that altruism does not rise to arbitrarily large levels when p1(st) is small.

Explicitly stated we assume here that the amount of warm-glow altruism household

1 holds towards household 2 is a decreasing function of the total number of household 1’s

period t gift-obligations, g1 · p1(st). This reflects the idea that warm-glow is diminishing in

the number of discrete transfers each household participates in — intuitively, the novelty of

warm-glow wears off as transfers become more common-place. Without loss of generality,

we will set γ̄F1 = 0 and focus our analysis around warm-glow altruism — thus, when we

speak of altruism moving forward, we are no longer referring to “pure” altruism. Intuitively,

and taken together, each household is altruistic towards others but is not unlimitedly so.

Households can vary in the “stock” of altruism (or altruistic capital as in Ashraf and Bandiera

(2017)) they possess, but will be limited in the degree of altruism they exercise towards other

households.

Dynamic Payoffs and Transfer Choices. At period t, households seek to maximize their

expected lifetime utility, which requires agreeing upon a history-contingent transfer contract

that is preferable to zero transfers across all states. Thus, we assume that households

compare payoffs from the dynamic contract to payoffs from a no-transfer rule.3 To set up

the household’s problem, we define U1(ht) as 1’s expected discounted utility gain from the

risk-sharing contract with 2 relative to a no-transfer rule after history ht:

U1(ht) = u1(y1(st)− τ(ht))− u1(y1(st))
+ γ1(g1, st)u2(y2(st) + τ(ht))− γ1(g1, st)u2(y2(st))

+E

∞∑
k=t+1

δk−t

{
u1(y1(sk)− τ(hk))− u1(y1(sk))
+γ1(g1, ht)u2(y2(sk)− τ(hk))− γ1(g1, ht)u2(y2(sk))

}
− α1(g1)

(3)

where δ represents the dynamic discounting factor. α1(g1) represents a second way in which

3Households in Foster and Rosenzweig (2001) revert to a sequence of history-dependent Nash equilibria
(SHDNE) in which transfers are maintained even when a household defaults from the contract. Such an
environment is not crucial for the type of analysis we conduct in our study. Nevertheless, appendix section
A shows how one can adapt our own model to reflect such SHDNE default transfers.
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our model diverges from others’ — it is the incremental cost to household 1 of maintaining

a gift-giving link with household 2 given network size g1. We assume that the cost of

maintaining such a link is convex in network size and can be thought of as the effort required

to maintain a social bond and, for example, awareness of household 2’s realized income.

The contract is enforced if the expected discounted utility surplus is nonnegative. The

contract requires an implementability constraint that states that gains from the contract be

at least as high as the no-transfer rule: U1(ht) ≥ 0 and U2(ht) ≥ 0. Together, the economic

environment, payoffs and transfer decision represent a simultaneous game in which agents

seek to find a contract that can be implemented in the presence of limited commitment and

no external enforcement mechanism.

Limited Commitment Contract Solution. Following Foster and Rosenzweig (2001)

and Ligon et al. (2002), the solution to the utility maximization problem will be a dynamic

program in which the current state is given by s out of the set of all states (s ∈ {1, 2, ..., S}),
and targeted discounted utility gain for household 2, U s

2 , is given.4 Choice variables in the

programming problem will be consumption assignments c1, c2 and the continuation utilities

U r
1 and U r

2 for each possible state r, resembling the next period. This enables us to write

the value function for household 1 as dependent on current target utilities and collective

resources: U s
2 , {y1(s) + y2(s)}. Formally, we write the dynamic programming problem as

U s
1 (U s

2 ) = maxτs,(Ur
1 ,U

r
2 )

S
r=1

u1(y1(s)− τs)− u1(y1(s))
+ γ1(g1(s))u2(y2(s) + τs)− γ1(g1(s))u2(y2(s))
−α1(g1) + δ

∑
πsrU

r
1 (U r

2 )

(4)

4Us
2 is defined by equation 19 when all subscripts with 1 are replaced with a 2 and vice versa.
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subject to

λ: u2(y2(s) + τs)− u2(y2(s)) (5)

+ γ2(g2(s))u1(y1(s)− τs)− γ2(g2(s))u1(y1(s))

− α2(g2) + δ
S∑
r=1

πsrU
r
2 ≥ U s

2

δπsrµr: U r
1 (U r

2 ) ≥ U r
1 = 0 ∀r ∈ S (6)

δπrφr: U r
2 ≥ U r

2 = 0 ∀r ∈ S (7)

ψ1: y1(s)− τs ≥ 0 (8)

ψ2: y2(s) + τs ≥ 0, (9)

where πsr represents the probability of state r occuring. Equation 5 says that transfer and

future utility allocations will satisfy the promise-keeping constraint. Equations 6 and 7

state that allocated utility in any state r will be at least as high as the lower bound utility

household 1 and, respectively, 2 can receive via defaulting to the no-transfer arrangement.

Equations 8 and 9 place non-negativity constraints on consumption allocations in period s.

The actual contract can be computed recursively, starting with an initial value for U s
2 .

The concavity of the dynamic programming problem renders the first-order conditions

both necessary and sufficient to obtain a solution. Thus, the evolution of the ratio of marginal

utility (re-inserting t subscript), together with the envelope condition, characterizes the

optimal contract:

u′1(y1(st)− τ(ht)) + γ1(g1(ht))u
′
2(y2(st) + τ(ht))

u′2(y2(st) + τ(ht)) + γ2(g2(ht))u′1(y1(st)− τ(ht))
= λ+

ψ2 − ψ1

u′2(y2(st)− τ(ht)
(10)

−U r′
1 (U r

2 ) =
λ+ φr
1 + µr

, ∀r ∈ S (11)

λ = −U s′
1 (U s

2 ). (12)

Taken together, these three conditions imply that a constrained-efficient contract can

be characterized in terms of the evolution over time of λ, where −λ is the slope of the Pareto

7



frontier.5 For each state s, there is a history independent interval [λs, λs] that constitute

the set of implementable contracts in state s. The lower bound value is the point at which

household 1 is indifferent between participating in a risk-sharing contract and default — the

upper bound reflects the symmetric position for household 2. The exact value of λ(ht+1) is

history dependent and evolves according to the value of λ(ht) in the following manner

λ(ht+1) =


λs if λ(ht) < λs

λ(ht) if λs ≤ λ(ht) ≤ λs

λs if λ(ht) > λs.

(13)

Given this contract structure and assumptions on utility parameters and income values,

numerical solutions for all interval endpoints can be obtained by solving an S×2 dimensional

non-linear system of equations.

Figure 1 describes the intuition behind this contract structure using a stylized example.

Suppose that in an initial period, t, a state is realized in which household 1 receives income

y1(st) = 2 and household 2 receives y2(st) = 1.6 If the two households follow the contract

structure in equation 13, then each household will weigh participation in risk-sharing against

the payoff received when they default from such a contract. Household 2 will only consider

this contract if λ(ht) is greater than λzv — the point at which household 2 is indifferent

between defaulting and participating in the risk-sharing contract (discounted utility surplus

equal to zero). Household 1 will have a similar payoff structure when λ(ht) = λzv. Both

households will prefer risk-sharing if they can settle on a dynamic contract between these

two numbers. Suppose the realized state in period t+ 1 is zz, where y1(zz) = y2(zz) = 1. If

altruistic preferences (and discount rates) are such that the contract intervals for the realized

state in t+ 1 does not overlap with the state in t (left panel in figure 1), the surplus will be

divided according to λ(ht+1) = λzz. If the contract intervals do overlap, then , λ(ht+1) = λzv.

Notice that this results in a division of the surplus in which both households strictly benefit

relative to default (i.e., closer to full consumption smoothing).

Income shocks. We now add more structure to the model to study the importance of

the transparency of cash transfers. Let us define two types of exogenous income shocks:

1) privately revealed cash prizes (denoted by v) and 2) publicly revealed cash prizes (b).

Households that do not receive cash prizes experience zero exogenous income shocks (z).

Thus, there are potentially nine different states that can be realized, though we limit our

5For a formal proof, see Ligon et al. (2002) and Thomas and Worrall (1988). The extension to the case
with altruistic preferences is straightforward as noted by Foster and Rosenzweig (2001).

6In later simulations, this income combination will be referred to as state zv
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analysis to states in which only up to one household receives a prize of any type: neither 1 nor

2 receive a prize (zz), 2 receives a private prize (vz), 2 receives a public prize (bz), 1 receives

a private prize (zv), and 1 receives a public prize (zb).7 Explicitly, here we are assuming that

the prize-winning household receives a higher income than the non-prize winning household

and the prizes are equal in value:

Assumption 1 (Prize-winners Have Higher Incomes)

y1(zv) = y1(zb) = y2(vz) = y2(bz) > y1(zz) = y1(vz) = y1(bz) = y2(zz) = y2(zv) = y2(zb)

Let us assume that the probability of receiving a transfer request, pi(st), is highest when

a household wins a publicly revealed prize. In other words,

Assumption 2 (Observability of Income)

p1(zb) > p1(s
′) for all s′ 6= {zb} and p2(bz) > p2(s

′′) for all s′′ 6= {bz}.

We argue that households who receive easily observable positive income shocks are more likely

to be approached by others to uphold their end of an informal gift-giving obligation. This

assumption is supported by evidence in similar contexts (e.g., Jakiela and Ozier (2016) and

Squires (2017)) in which participants in behavioral experiments willingly spend part of their

payoff to allow winfall income gains to be hidden from their peer group. This assumption

implies that the warm-glow altruism weight household 1 holds towards household 2, for

example, decreases when household 1 wins a publicly revealed lottery.

2.1 Model Simulations

Given the complexity of the state-space, it is not possible to analytical explore solutions to

this model. We are, however, fundamentally interested in how the risk-contract depends on

the size of the gift giving network g1 and the public or private nature of the prize in the real-

ized state — thus, we explore numeric solutions using set values for model parameters while

allowing network size to vary. We find that as network size increases, the marginal utility of

participating in a risk-sharing contract is decreasing in network size, but is decreasing at a

faster rate in the state when a household wins a public prize. This, combined with the cost

7There are four additional combinations that can occur in principle: bb, vv, bv, and vb. We are primarily
interested in analyzing the transfer behaviors of lottery winners to those who did not win a lottery, thus we
exclude these four states from our analysis to preserve simplicity.
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of maintaining a gift-giving link will result in a gift-giving “shutdown” — beyond a certain

network size threshhold, if requests for gifts are too large, then the household will not give

any gifts. Additionally gift-transfers will in most cases be larger when a household wins a

privately-revealed prize.

For the purposes of the simulation, we use log-utility for both household 1 and 2’s single-

period utility over consumption and use the following values for the model parameters. When

a household wins a prize their income is equal to 2, e.g., y1(zv) = 2, otherwise income is

equal to 1, e.g., y1(zz) = 1. Warm-glow altruistic capacity is set at γW1 = γW2 = 2.5 for

both households. Transition probabilities are πzz = 0.3, πzv = πzb = πvz = πbz = 0.175,

which reflect that the most probable outcome is the case in which neither household wins a

prize (zz) — all other states transpire with equal probability. When a household receives a

publicly revealed prize, it will receive gift requests from all network members, i.e., p1(zb) =

p2(bz) = 1. Otherwise, the probability that any given gift-network household requests a gift

is p1(zz) = p2(zz) = p1(bz) = p1(vz) = p1(zv) = p2(zb) = p2(zv) = p2(vz) = 0.2. Finally,

the discount rate is set to δ = 0.65 for both households.

Without loss of generality, we focus our analysis on household 1’s behavior. Figure 2

shows the evolution of the optimal (log) contract intervals as network size increases. At low

network-size values, less than 4, the contract intervals overlap and are unchanging — they

are unchanging because we limit warm-glow altruism towards household 2 to a maximum of

0.5. Once network size increases beyond 4, the influence of warm-glow altruism decreases

in the state in which household 1 wins a publicly revealed lottery — zb. The lower- and

upper-bound intervals start to increase until they no longer overlap with state zz and then

with state zv. In our example, the contract intervals in state zz and zv overlap over the

entire domain in figure 2.

Figure 3 shows the resulting discounted lifetime expected utility of such a contract when

the initial state is either zv or bz and when household 1 extracts all the possible surplus —

in other words, in the initial state, we select λ(h1) = λ(s1) since household 1 extracts the

highest surplus when household 2’s surplus is set to zero. Here, we see that discounted utility

in state zb is less than discounted utility in state zv throughout the domain — this is due

to the lower warm-glow altruism one experiences when encumbered with a higher number of

gift-requests. Additionally, discounted utility decreases at a faster rate in the zb state until

the zz and zb contract intervals cease to overlap — at this point, there is a slight jump in

discounted utility in the zb state. However, after this jump, utility in the zb state continues

to decrease at a faster rate. Figure 3 also includes a plot of the cost of maintaining one’s

gift-giving ties, α(g1). Once discounted utility falls beneath this line, household 1 will shut
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down all giving to other households when state zb is realized.

2.2 Model Implications

These features of the model lead to our first empirical prediction:

Prediction 1 (The Shut-down Hypothesis) Households with large gift-giving networks

that experience positive publicly-revealed income shocks are more likely to “shut down,” re-

sulting in lower levels of transfers to others.

Figure 4 uses gift transfers between households 1 and 2 to show the empirical implica-

tions of the shut-down hypothesis. Notice that at low values for gift-networks, household 1

transfers the same amount to household 2 regardless of being in state zv or zb. However,

as the network size increases, transfer amounts start to decrease until they are equal to zero

at the shutdown threshold and beyond. This relationship leads to two additional empirical

implications:

Prediction 2 (Privately Revealed Prize = Higher Average Transfer Value) The av-

erage gift value is higher in households that win privately revealed prizes than households that

receive publicly revealed cash prizes.

Prediction 3 (Publicly Revealed Prize = Higher Number of Gifts Given) The av-

erage number of gifts given is higher in households that win publicly revealed prizes prior to

passing the shutdown threshold.

The above two predictions also imply that the total value of gifts out of households

who win publicly revealed prizes are higher than the total value of gifts given from other

households prior to the household reaching its shut-down threshold. This is easily shown

by multiplying the average transfer value by the number of gift-obligations in period t (see

appendix figure C.1 for a graphical representation). The prediction can be stated as:

Prediction 4 (Prior to shut-down = Larger Volume of Transfers After Public Prize)

Prior to reaching their shut-down threshold, the volume of gifts given by households who win

publicly revealed income will be larger than the volume of gifts given by households who win

privately revealed income.
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So far we have discussed how the model generates predictions regarding the gift-transfer

behavior of household 1. Naturally, if household 2 receives gifts from household 1, we should

be able to symmetrically identify changes in household 2’s consumption as a function of

household 1’s lottery winnings. This implies that household 2’s consumption levels will be

higher on average when their gift-giving network wins a cash prize. However, since transfers

are predicted to be higher when the peer household wins a private lottery, it is likely that

the effect will only be observed in such a state. Furthermore, since household 1’s marginal

utility is decreasing in household 2’s consumption, we should see stronger patterns of gift-

giving through the private lottery when the income gap between households 1 and 2 is large.

It is straightforward to show via simulation that average transfer sizes increase as the gap

between 1 and 2’s per-period income increases.8 This leads to the final prediction:

Prediction 5 (Consumption Increasing in Others’ Winnings) A household’s per-capita

consumption is an increasing function of its peer-network’s average private lottery winnings.

It may be an increasing function of its peer-network’s public lottery winnings if its peers do

not experience a shutdown in giving (i.e., peers have small gift-giving networks).

3 Data and Descriptive Evidence

We combine a field experiment with household surveys to construct the data used in the

analysis. The field experiments were conducted between March and October 2009 in con-

junction with a year-long household survey in four communities in Akwapim South district

of Ghana’s Eastern Region. This district lies some 40 miles north of the nation’s capital,

Accra, but is sufficiently far away that only a handful of respondents commute to Accra

for work. The sample consists of approximately 70 households from each of the four com-

munities.9 Individuals in the sample include the household head and his spouse.10 There

8Similarly, one could add one more income-realization possibility to the state space — negative income
shock — to generate relevant predictions. This would likely over-complicate the model for our purposes so
we have left such simulations out of this paper.

9The survey was part of a three-wave panel, the first two waves having been conducted in 1997-98 (e.g.,
in Conley and Udry (2010)) and 2004 (Vanderpuye-Orgle and Barrett, 2009). Slightly more than half of the
70 households were part of the initial 1997-98 sample, and the rest were recruited in January 2009 using
stratified random sampling by the age of the household head: 18-29, 30-64, 64+. the shares of households
whose head was in each of these age categories corresponded to the community’s population shares. In the
original sample, and in the 2009 re-sampling, we selected only from the pool of households headed by a
resident married couple. However, we retained households from the 1997-98 sample even if only one of the
spouses remained.

10Some men in the sample have two or three wives, all of whom were included. However, for the sake of
simplicity we refer to households throughout the text as having two spouses.
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are between 7 and 12 sampled ‘single-headed households’ in each community. In total the

sample used in our study includes 606 individuals comprising 325 households in each of the

four communities.

Survey. Each respondent was interviewed five times during 2009, once every two months

between February and November.11 Each survey round took approximately 3 weeks to

complete, with the two survey teams each alternating between two villages. The survey

covered a wide range of subjects including personal income, farming and non-farm business

activities, gifts, transfers and loans, and household consumption expenditures. Each round,

both the husband and wife heading each household were interviewed separately on all of these

topics. Our data set is assembled mainly using information contained in the expenditure,

gift and social network modules of the survey.

The expenditure module asked detailed information on the quantities and values pur-

chased of a long list of items with broad categories including home produced food consump-

tion, purchased food consumption, school-related expenditures (fees and complementary

goods such as uniforms), medical expenditures (medicine and health fees), among others.

Referring to the month prior to the interview, we asked each spouse about his or her own

expenditures, those of their partner, and about expenditures of the household as a whole.

Appendix table B.1 collects summary statistics. Of note in this table is the observation

that there is within-household specialization in food expenditures: household heads (mostly

males) are more responsible for procuring food produced on the household’s farm while the

spouse (mostly females) are responsible for purchasing food to supplement home-produced

food. Given that the household head and spouse seem to coordinate around total household

food consumption, we aggregate variables at the household level.12

In the gifts module, respondents were asked to report any gifts (in cash or in kind)

given and received during the past two months, obtaining information on the counterparty’s

location and relationship to the respondent. The value of the gift given and an estimated

value for in-kind gifts were also recorded. We pool monetary and in-kind gifts into a single

measure and drop incidents within-household transfers — i.e., gifts transferred to one’s

spouse. Since we are primarily interested in gifts received from others who are potential

winners of lottery prizes, we drop observations of gifts received from others who do not

11For details regarding interview timing and survey instruments, see Walker (2011).
12For food expenditures, this involves summing the household head and spouse’s “own food” consumption.

Each individual provides his or her own list of gifts given/received and is not asked to report spouse’s gift
information, so household aggregation is a straightforward sum of these lists for gift-related variables. See
Castilla and Walker (2013) for a study analyzing how information asymmetry influences spending decisions
within the household using the same data.
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reside within the village.

After selecting the sample but before collecting baseline data a detailed survey of respon-

dents’ social contacts was conducted. Each respondent was asked in turn (and in random

order) about every other respondent in the sample from his or her community. More specifi-

cally, the social network module of the survey asked whether they knew the person, by name

or personally, how often they saw them, whether they were related, what they perceived the

strength of the friendship to be, whether they had ever given or received a gift to or from

the person, and whether they would trust the person to look after a valuable item for them.

Due to the nature of the data, we can confirm the bi-directional nature of reciprocal gift-

networks. We do this by merging individual i’s response regarding j’s gift-giving behavior

with individual j’s response of i’s gift-giving behavior. We establish a reciprocal gift-link

between any two individuals when both state that they have ever received and given gifts

to the other individual. This substantially reduces any concerns regarding the measurement

error of the network. We consider that two households are linked to each other in a recip-

rocal gift-giving relationship if at least one pair of the potential combinations engages in

mutual gift-giving. For example, there are four total combinations between household A and

B when both households have one male (M) and female (F) head/spouse: AM-BM, AM-BF,

AF-BM, AF-BF. If a reciprocal gift-giving links exists between at least one of these pairs,

then we state that household A and B have a reciprocal gift-giving relationship. Otherwise,

no such link exists. Household-aggregated measures that form the basis of our analysis are

represented in table 1. On average, each household has roughly five members and has re-

ciprocal gift-giving relations with 11.5 other households. Roughly 13% of the households in

do not have in reciprocal gift-giving links with any other household in the sample. Across

the five rounds of data, households give and receive 1.58 and 0.58 gifts respectively to any

other household over the course of two months. The average total value of the gifts given

(received) is 20.02 (12.58) GH¢. Household per-capita food consumption is reported in the

third panel of table B.1. The total household per-capita food consumption in our sample is

26.64 GH¢, 68% of which is purchased food.13

Experimental Data. The first round of the survey was designed as a baseline, therefore

no lottery took place in that round. One week before each subsequent round we visited each

village to distribute prizes to selected respondents. Twenty prizes were allocated in each

community, in each of the four lottery rounds, so that in all 320 prizes were given. Over the

four lotteries, approximately 42 percent of individuals and 62 percent of households won at

least one prize. Ten of the prizes were divisible in the form of cash, whereas the other ten

13Seasonal conditions account for inter-temporal variation in the amount/value of purchased food in the
household.
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were in the form of livestock. Of these, five each were allocated publicly by lottery, and the

other five (identical in type) were allocated in private, by lucky dip. The values of the prizes

varied from GH�10 to GH�70 as described in figure 5.14 The prizes were of a substantial

size - the largest prize is equivalent to a month’s worth of food consumption for an average

household with five members. In aggregate, each community received GH�370 of cash in

each round to use however they would like.

The lotteries took place one week before the commencement of the survey interviews.

We took great care to make clear to participants that the allocation of prizes was random,

and that each individual had an equal chance of winning in each round. A village meeting

was held in a central area of the community, and all respondents were invited to attend. A

small amount of free food and drink was provided as an incentive to come. Attendance at

the meetings was generally around 100 people; roughly half of the respondents appeared for

each meeting.15 There were usually a number of non-respondents at these meetings as well,

including many children. At each gathering we thanked the participants for their continued

support. We explained that respondents had a chance to win one of 20 prizes that day,

framing the prizes as a gratuity for their participation in the survey.16 We then proceeded

to draw winners for the ten public prizes (without replacement) from a bucket containing

the names of the survey respondents. A village member not in the sample was chosen by the

villagers to do the draw, in order to emphasize that the outcomes were random. Each winner

was announced to the group, and asked to come forward to receive their prize. The prizes

were announced and displayed clearly before being awarded. Respondents who were absent

at the time of drawing were called to pick up their prize in person, if possible. Unclaimed

prizes were delivered in person to the winner after the lottery. After the public lottery

prizes were distributed, we conducted a second round in private. Respondents were asked to

identify themselves to a survey worker, who took their thumbprint or signature and issued

14In this paper, we are primarily interested in transfers of divisible windfall gains, thus we focus our
attention on cash lottery winnings. The livestock were purchased in Accra on the morning of the lottery and
transported to the community. The value of the price differed according to the type of livestock: Chickens
(10�), two chickens (20�), small goat (35�), medium goat (50�), and large goat (70�). Different households
may face different transaction costs, so the value of livestock, as opposed to cash, is heterogeneous across
households, which further complicates the use of livestock in the analysis. Additionally, in this study context,
it is more difficult to ‘privately’ grant lottery winners a large goat than it is to privately grant them the same
amount in cash.

15Around 125 of the 150 respondents in each community appeared for the privately revealed lottery, some
of them arriving before or after the public meeting.

16Respondents signed an informed consent form at the start of the survey, explaining how they would
be remunerated for their participation in the survey. Entry in the lottery and lucky dip was part of this
remuneration. In addition to the chance of winning a prize, each respondent was given a small amount of
cash for their participation, which varied across rounds. This gift was used as an endowment in a public
goods experiment as part of a separate study.
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them with a ticket displaying their name and identification number. They then waited to

enter a closed school room, one at a time, where an enumerator invited them to draw a

bottle cap without replacement from a bag. There was one bottle cap for each of the N

respondents in the community. Of these, N - 10 were non winning tokens (red colored),

and ten were winning tokens, marked distinctively to indicate one of the ten prizes listed in

figure 5.17 Those who drew winning tokens were informed immediately that they had won a

prize, which was identified to them, and were told that they did not have to tell anyone else

that they had won. We emphasized that the survey team would not divulge the identities of

winners who won in private. Cash prizes were given to the winners immediately and winners

often hid their prizes in their clothes before leaving the room. The survey interviews in

each round commenced one week after the lottery, deliberately delayed to allow winners to

receive their prize and do something with it. The interviews took place in no specified order

throughout the following three weeks, so that some winners were interviewed a week after

receiving their prize, and others up to four weeks afterward.

Appendix table B.3 presents balance tests conducted on variables collected at baseline

according to whether one member of the household won any of the public or private lottery

at any point over the course of the year. 119 of the households in the study are thus in our

“treatment” group while the remaining 190 did not win a cash prize. We also separate the

test according the households that won the privately revealed vs. publicly revealed lottery.

The table suggests that randomization was successful — of the 21 tests along which we seek

to reject balance, one is significant at the 5% level and another is significant at the 10%

level. For the others, balance cannot be rejected at the 10% level.

To calculate gift-network lottery winnings, we simply take the average cash winnings

(private vs. public) of each household’s gift-network. In other words, for every household i

out of N , private (replaceable with public) network lottery winnings are

Privateit =
N∑
j=1

Privatej × 1(gij == 1)∑N
j=1 1(gij == 1)

,

where gij = 1 if there is a reciprocal gift-giving relationship between households i and j (0,

otherwise), Privatej ∈ {0, 10, 20, 35, 50, 70} are the values of cash prizes household j can win

17Care was taken to shuffle the bottle caps after each draw, and to prevent respondents from seeing into
the bag. If a respondent drew more than one bottle cap, those caps were shuffled and the respondent was
asked to blindly select one of them. Respondents were shown a sheet relating the tokens to the prizes
(See Walker (2011)). At the conclusion of the day, tokens that had not been drawn were counted and the
remaining prizes allocated randomly among the non-attending respondents using a computer. There were
usually 25-30 non-attendees and less than three prizes remaining.

16



and 1 represents the indicator function.18 The bottom two panels of table 1 present the

average (log) value of own and network cash winnings and show that average prize winnings

roughly represent the expected value of the cash prize of all households in the village sample.

4 Empirical Investigation

The unique features of our experimental design allows us to bring the model predictions to

the data in a straightforward manner. Let yit be the outcome of interest: either the amount

of round t gifts distributed or the number of round t gifts distributed by household i. The

shutdown hypothesis (Prediction 1 in Section 2) can be investigated using the following

regression:

yit = α + βvPrivateit + βbPublicit

+ βvgPrivateit × Net-sizei + βbgPublicit × Net-sizei

+ hhi + rt + εit,

(14)

where βv captures the extent to which round t gift-behavior is influenced by round t privately

revealed lottery winnings and βb captures the influence of publicly revealed lottery winnings.

Net-sizei is household i’s reciprocal gift-network size. hhi captures household fixed effects

and rt captures round fixed effects. Importantly, notice that household fixed-effects control

for all time-constant household factors including the size of its gift-network. Given the

distribution of the outcome variables, the specific estimator will place restrictions on the

error term, εit. Specifically, when the outcome variable is the (log) amount of gifts given,

we use the tobit estimator where we integrate out censored observations equal to zero. The

number of gifts given follows a poisson distribution, so we use a poisson estimator to estimate

the coefficients of interest under this dependent variable. Predictions 2 and 3, that do not

depend on heterogeneity in network size, can simply be tested by setting the interaction

terms equal to zero.

An empirical investigation of the model implication in terms of consumption (Prediction

5, Section 2) requests instead to relate household i’s consumption behavior against the

average lottery winnings of i’s gift network — i.e.,the average network treatment effect on

18In one round, both the household head and spouse within the same household won the lowest of two
public lotteries. Hence, for this household, the prize winnings amounted to 30.
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consumption (defined in Section 3). Thus, we estimate the following equation:

yit = α + βvPrivateit + βbPublicit + βvnPrivateit + βbnPublicit + hhi + rt + εit, (15)

where yit is log per-capita household food consumption. We do not expect food consumption

to be an increasing linear function in network lottery winnings. However, we do expect that

households with lower levels of period-specific food-consumption will receive more support

from their network. Therefore, we opt to use a quantile regression estimator to examine

effects at different locations along the consumption distribution. Table 2 summarizes how

coefficients in each of the estimation equations link to predictions from our theoretical model.

Table 3 contains the estimation results of model 14 with three different outcome vari-

ables, with and without interaction terms. The negative coefficient in the fourth row (βbg) of

columns 4-6 indicates that individuals winning the public lottery are associated with lower

levels of transfers the larger is their gift network size. This is in line with the shut-down

hypothesis predicted by our model (prediction 1). Notice that in column 3, the first row

coefficient (βv) is larger than the second row coefficient (βb) — this confirms the hypothesis

that each individual gift is, on average, larger for individuals winning the private lottery

(prediction 2). Notice the difference in the second row in columns 2 and 5. In column 5, βb
is positive and large but is insignificant from zero in column 2. This indicates that without

including the interaction effect, we underestimate the number of gifts given for someone with

a relatively small gift-network after winning the public lottery. This suggests that prediction

3 is confirmed. Furthermore, the second row in columns 1 and 4 show a similar story —

furthermore, βb is larger than βv in column (4), which is consistent with the pattern we

observe in figure C.1 (prediction 4). Figure 7 provides a non-parametric test of prediction 4

— it is consistent with figure C.1 generated by model simulations. Finally, figure 6 estimates

equation 14 as a fourth-order polynomial (take powers 0-4 on the interaction coefficient and

sum them together) and shows a shut-down network size of roughly 15 individuals in the

mutual gift-giving network (taking point estimates as given).

Turning to the model implications in terms of consumption, we depict graphically the

results of the quantile estimation of equation (15) in Figure 8. We use observations from the

first three rounds of data — the hungry season in Ghana when unlucky households are most

likely to require help from others. The lower the per-capita food consumption, the more

likely one is to increase consumption when their friends win the private lottery winning —

the coefficient on private average network lottery winnings is positive and greater than zero

for analyzed quantiles less than the 50th percentile. The same cannot be said about the pub-

lic lottery winnings of one’s gift network. Here, the coefficient is only positive for households
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whose per-capita food consumption falls below the 10th percentile. Furthermore, consump-

tion increases by a smaller margin at the lowest percentiles when gift network members win

public relative to private lotteries. These results are all in line with prediction 5 and likely

flow from the fact that households who win publicly revealed lotteries are subject to social

taxation and are unable to assist connected households who exhibit great need.

5 Robustness and Extentions

The extremely detailed micro-structure of our data offers an alternative strategy to test the

model predictions and look further into underlying mechanisms. Let gij be a dyadic variable

taking value 1 if household i has an established reciprocal gift-giving link with household j,

equation 14 takes the following form:

yijtv = α + βvPrivateit + βbPublicit

+ βvgPrivateit × Net-sizei + βbgPublicit × Net-sizei

+ γNet-sizei + villagev + rt + εijt

(16)

where the outcome variable measures (log) gifts amounts and numbers given from i to j

and village fixed effects are included (instead of household fixed effects). Although transfers

among dyads within our sample constitute a small share of total transfers reported in the

survey’s gift-module, this model specification provides a robustness check and, more im-

portantly, allows us to examine the extent to which households target each other for gifts.

Further, we can differentiate between dyads who have a mutual gift-giving relationships and

those that do not.

Recall, altruistic preferences imply that household i’s marginal utility is an increasing

function of the relative suffering of household j — in other words, the lower household j’s

consumption levels relative to i, household i is more incentivized to transfer resources to

household j under altruistic preferences. To examine this prediction in our data, we can

estimate the following equation via dyadic analysis:

yijtv = α + βvPrivateit + βbPublicit

+ βvχPrivateit × (χ̂i − χ̂j) + βbχPublicit × (χ̂i − χ̂j)
+ γ(χ̂i − χ̂j) + villagev + rt + εijt

(17)

where we have replaced the “Net-sizei” interaction term with the difference in household i
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and j’s food shocks, χ̂i − χ̂j. The “more positive” i’s food consumption shock is relative

to j’s, the higher the difference. If i holds altruistic preferences over j, then β{v,b}χ will be

positive. We measure food shocks in the following way. Given the panel nature of our data,

we measure deviations from round-adjusted average household per-capita food consumption

by recovering the OLS residual error term from the equation:

Per-Capita Foodit = hhi + rt + χit

where hhi and rt are respectively household and round fixed effects. The resulting variable,

χ̂ measures household-round specific shocks to per-capita food consumption.

Table 4 and 5 reports the OLS estimation results of model 16 without and with in-

teraction terms, respectively. Each of these tables splits the sample into those dyads who

have a mutual gift-giving relationships and those that do not. Overall, evidence is consistent

with the model and suggests that private lottery winnings are transferred to individuals

who are already in one’s gift-giving network. Public lottery winnings are more likely to go

to individuals who are not in one’s mutual gift-giving network, suggesting that individuals

outside of this network will solicit the lottery winner for help. The shut-down hypothesis is

again confirmed, although standard errors are large. More specifically, column 2 of table 6

shows that while all individuals in one’s network receive more gifts when individual i wins

the privately revealed lottery, the largest gifts are reserved for those households j whose

food-shocks are largest. In other words, household i gives more to households whose realized

food consumption is much lower than household i’s realized food consumption. This same

pattern does not take place when household i wins the publicly revealed lottery. Instead,

when household i wins a publicly revealed lottery, he gives to households who are not in its

gift network only when they experience a negative food shock relative to household i. This

is totally in line with model prediction 5. Table B.6 estimates a triple-interaction that pools

all observations and shows evidence consistent with table 6.

We conclude this section with an exploration of the channels motivating solidarity net-

work. In particular, we would like to investigate whether we find evidence consistent with

altruism being an important driver, besides insurance. If social solidarity networks indeed

smooth members’ consumption by distributing income shocks across the network, the famil-

iar prediction, following Townsend (1994), is that the inter-temporal change in one member’s

consumption should track one-for-one the average consumption change over the same period

within the rest of one’s network. Within our model, the testable prediction is the null that

the coefficient relating a survey respondent’s period-on-period change in log consumption
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to the contemporaneous change in network average consumption equals one. Within our

model, across the full social solidarity network we expect to reject the null in favor of the

one-sided alternate hypothesis that the coefficient is less than one but also to reject the null

that change in consumption is uncorrelated, in favor of the one-sided alternate hypothesis

that they are positively correlated. This occurs because of the shut down hypothesis and

because private winnings will not get shared with networks members who do not exhibit

great material need.

Table 7 reports results of those hypothesis tests. We show that limited risk pooling oc-

curs within the full network. The point estimate of 0.23 is statistically significantly greater

than 0 only at the 10 percent level and one can easily reject the null that it equals 1.00. Mean-

while, the respondent’s own winnings, whether private or public, and the average winnings

within one’s network are statistically insignificantly related to a respondent’s consumption

volatility once one controls for consumption volatility within one’s network, consistent with

the altruism in networks model of Bourlés et al. (2017). From this result, we can conclude

that there are multifaceted drivers of gift-giving in this gift-network that may include lim-

ited degrees of risk pooling, but likely involve solidarity among network ties. In summary,

our evidence points toward th efact that it is hard to argue that the solidarity network is

motivated mainly by insurance. Combined with the significant giving from private winnings,

it certainly appears that altruism and taxation are more compelling explanations. Insurance

may play a role, but it hardly seems a primary role.

6 Conclusion

We analyse altruistic preferences in networks by examining a model of risk sharing under

imperfect commitment where the impurely altruistic gains to giving to others diminish with

the number of transfers one makes. Giving is costly, and stochastic income has both pub-

licly observable and unobservable components. Contrary to the canonical informal insurance

model, in which bigger networks and observable income are preferable, our model predicts

that unobservable income shocks may facilitate altruistic giving that better targets the least

well off within one’s network and that too large a network can overwhelm even an altruistic

agent to cease giving. Full risk-pooling is maintained within the network that remains so

long as an agent does not exist the arrangement. We take these predictions to a unique data

set from southern Ghana. We couple observations of gift-giving networks with experimental

cash windfall gains - randomized between private and publicly observable payouts - repeated

every other month for a year to analyze transfer flows among households. We find four
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striking results. First, on average, more gifts are given out of private cash winnings than

public cash winnings, signaling that altruistic preferences - not just self-interested behav-

ior within an endogenously enforceable insurance scheme - must be a significant driver of

inter-household transfers. Second, winners of privately revealed prizes target giving to the

neediest households within their networks, indicating greater social welfare gains from altru-

istic transfers than from insurance transfers. Third, winners of publicly revealed cash prizes

do not make transfers when they have large networks; they break the informal contract due

to network size. Fourth, conditional on transfers flowing within one’s network, we cannot

reject the null of full risk pooling. These results highlight the limits to social networks as

channels for managing income shocks as well as the trade-offs inherent to transparency in

transfer programs. Although observability of income is essential in informal insurance ar-

rangements among purely self-interested agents, observability may impede altruistic agents’

ability to focus their giving on the most needy as they are compelled to respond to demands

for assistance from the less needy within their network.
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Table 1: Household Summary Statistics

N Mean Sd 5 p-tile 95 p-tile

Fixed Over Time:

HH size 309 4.94 2.19 2 8

N of HH in Solidarity Network 309 11.56 10.11 0 32

Gifts (last 2 months, GH¢):

N Gifts Given 1,525 1.60 2.16 0 6

N Gifts Received 1,525 1.45 1.95 0 5

Total Value of all Gifts Given 879 26.77 88.94 1 90

Total Value of all Gifts Received 893 46.38 130.77 1.50 158

Food Consumption (last month, GH¢):

PC Food Consumption 1,525 26.64 21.70 5.05 65.10

PC Purchased Food 1,525 18.12 19.14 0 48.93

PC Home-produced Food 1,525 8.51 8.53 0 23.45

Own Lottery Winnings (GH¢):

Cash - Private 1,525 1.84 9.42 0 0

Cash - Public 1,525 1.87 9.55 0 0

Solidarity Network Average Lottery Winnings (GH¢):

Solidarity Network Cash - Private 1,525 1.81 4.52 0 8.33

Solidarity Network Cash - Public 1,525 1.74 4.29 0 8.33

Gift Network data missing for a subset of observations. N of gifts given/received equal
zero if none given/received. Value of gifts contingent on having received at least one.
Household food consumption (total) sums the head of households and spouse’s response.
Solidarity network lottery winnings multiply the vector of lottery winners by the row-
normalized network adjacency matrix (result is average networks’ lottery winnings). Net-
work values represent log transformations of original winnings/averages.
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Table 2: Linking Empirical Analysis to Theoretical Predictions

Predictions

Equation 1 2 3 4 5

Shut-Down Average Gift Value Gift Number Total Value Consumption∗

14|Net-size = 0
βv > βb βb = βv βb = βv

14
βb > 0, βbg < 0 βb > βv βb > βv

15 Quantile Regression∗∗

Notes: ∗ Tests referring to prediction 5 suggest that those households who have lower levels of food consumption
relative to network contacts who win the lottery will be more likely to receive transfers and will receive higher
values per transfers. ∗∗ Indicates coefficient on βvn should be larger at lower quantiles.
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Table 3: Prize Winnings Influence Gift-Giving

No Interaction Shut-down Hypothesis

Dep. Var.: Gifts-Given Value Number Value
Number

Value Number Value
Number

Private Cash Winnings 0.010∗ 0.017∗∗ 0.007∗∗ 0.010∗ 0.016∗∗ 0.007∗

(0.005) (0.007) (0.004) (0.005) (0.007) (0.004)

Public Cash Winnings 0.002 0.005 -0.001 0.012 0.026∗∗∗ 0.004

(0.005) (0.007) (0.003) (0.007) (0.010) (0.005)

Public Cash Winnings × N Mutual Gifts -0.001∗ -0.002∗∗∗ -0.001

(0.001) (0.001) (0.000)

Household FE Yes Yes Yes Yes Yes Yes

Round FE Yes Yes Yes Yes Yes Yes

N 1602 1602 1602 1602 1602 1602

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Dependent Variable equals log value of gifts given in columns 1 and 4, number of

gifts given in column 2 and 5, and log value per gift ( log(Total Value)
Total Number ) in columns 3 and 6. Household and Round Fixed

Effects Included in Every Specification. Coefficients estimated using Tobit estimator with a lower bound of zero (no
upper bound). Log transformation of variables adds one to original value so that zero values are preserved under log
transformation.
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Table 4: Dyadic Regressions

Mutual All Other Sample Links

Log(Amountijt) Numberijt Log(Amountijt) Numberijt

Lottery-Privateit 0.322∗ 0.296∗∗∗ -0.462 -0.241∗

(0.190) (0.081) (0.289) (0.145)

Lottery-Publicit 0.168 -0.013 0.136 0.086

(0.185) (0.095) (0.202) (0.101)

Village FE Yes Yes Yes Yes

Round FE Yes Yes Yes Yes

N 19330 19308 114645 111453

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Dependent variable in even columns equals amount of actual gift
given from i to j in any given round t; Odd columns equals number of gifts. ’Network Sizei’ indicates
household i’s gift-network size (any type of gift-relation). Odd columns are tobits with lower bound
of zero. Even columns are poisson regressions. Columns 1-2 only include links (i and j) with mutual
gift-relations at baseline (178 actual gifts given during the 5 rounds). Columns 3-4 include all oher links
(180 actual gifts given).

29



Table 5: Dyadic Regressions - Shutdown

Mutual All Other Sample Links

Log(Amountijt) Numberijt Log(Amountijt) Numberijt

Network Sizei -0.017 -0.010 0.052 0.023

(0.023) (0.013) (0.036) (0.015)

Lottery-Privateit 0.607∗∗ 0.330∗∗∗ 0.239 0.083

(0.301) (0.125) (0.340) (0.156)

Lottery-Publicit 0.495 0.131 0.502∗∗ 0.298∗∗

(0.365) (0.182) (0.247) (0.125)

Lottery-Privateit × Network Sizei -0.016 -0.002 -0.112∗∗∗ -0.052∗∗∗

(0.014) (0.006) (0.043) (0.019)

Lottery-Publicit × Network Sizei -0.019 -0.009 -0.040∗ -0.026∗∗

(0.020) (0.011) (0.023) (0.013)

Village FE Yes Yes Yes Yes

Round FE Yes Yes Yes Yes

N 19330 19330 114645 114645

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Dependent variable in even columns equals amount of actual gift given from i to j in
any given round t; Odd columns equals number of gifts. ’Network Sizei’ indicates household i’s gift-network size (any type
of gift-relation). Odd columns are tobits with lower bound of zero. Even columns are poisson regressions. Columns 1-2
only include links (i and j) with mutual gift-relations at baseline (178 actual gifts given during the 5 rounds). Columns
3-4 include all oher links (180 actual gifts given).
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Table 6: Dyadic Regressions - Food Shocks

Mutual Gift All Other Sample Links

Log(Amountijt) Numberijt Log(Amountijt) Numberijt

Lottery-Privateit 0.259 0.295∗∗∗ -0.560∗ -0.285∗∗

(0.205) (0.092) (0.302) (0.144)

Lottery-Publicit 0.118 -0.038 0.007 0.032

(0.190) (0.096) (0.229) (0.113)

Food-Shockijt -0.157 -0.093 -0.061 -0.039

(0.210) (0.101) (0.282) (0.136)

Lottery-Privateit × Food-Shockijt 0.462∗∗∗ 0.118∗ -0.574∗ -0.256∗

(0.169) (0.064) (0.322) (0.132)

Lottery-Publicit × Food-Shockijt -0.265 -0.110 0.618∗ 0.254∗

(0.304) (0.153) (0.336) (0.140)

Village FE Yes Yes Yes Yes

Round FE Yes Yes Yes Yes

N 18374 18374 92347 92347

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Dependent variable in even columns equals amount of actual gift given from i to
j in any given round t; Odd columns equals number of gifts. ’Food-Shockijt’ indicates the difference between i and j
estimated food consumption residual (χ̂i − χ̂j — household and round fixed effects). Odd columns are tobits with lower
bound of zero. Even columns are poisson regressions. Columns 1-2 only include links (i and j) with mutual gift-relations
at baseline (169 actual gifts given during the 5 rounds). Columns 3-4 include all oher links in the sample (156 actual
gifts given).
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Table 7: Tests of Full Risk-Sharing

∆log(food)ivt

∆log(food|NET)ivt 0.232∗

(0.138)

Private Cash Winnings 0.062

(0.057)

Private Cash Network Winnings 0.016

(0.046)

Public Cash Winnings -0.038

(0.035)

Public Cash Network Winnings -0.018

(0.039)

HH FE Yes

Round FE Yes

N 1279

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Dependent Variable
equals first difference of log per-capita household food con-
sumption. Coefficients represent OLS estimators. Vari-
ables with line above the variable name indicate household
i network’s average for each variable.
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Figures
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Note: This figure shows how contract intervals relate to the pareto frontier when 1) intervals
overlap and 2) when they do not. Values along the x-axis represent household 2’s single-
period utility and y-axis represents household 1’s single-period utility. In state st = zv,
household 1 receives an income of y1(zv) = 2 and household 2 receives an income of y2(zv) =
1 (aggregate income, y(zv), equals 3). In state st+1 = zz, both households receive an income
of 1 (y(zz) = 2). We assume that in period t contracts are such that household 2 receives
the entire discounted utility surplus (λ(ht) = λzv). In period t + 1, the resulting division of
surplus depends on whether or not the contract intervals overlap. When there is no overlap
(left-hand side), λ(ht+1) = λzz. When there is overlap, λ(ht+1) = λ(ht) = λzv. Overlapping
contracts allow for higher degrees of consumption smoothing over periods.

Figure 1: figure
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Figure 2: Contract Intervals
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Note: Contract interval solutions as a function of network size with log utility (i.e., u1() =
u2() = ln(). Logged values of λ on the y-axis and network size on x-axis. Contract intervals
in state zb increase when g1 > 3 and no longer overlaps with zz when g1 > 4. Furthermore,
it is non-overlapping with zv when g1 > 6. The first-best contract (stationary share of
aggregate output) is only available when network size is less than three.

34



Figure 3: Discounted Lifetime Expected Utility
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Note: Discounted lifetime expected utility for household 1 when the initial state iz zv vs.
zb and when household 1 takes all available surplus from the transfer arrangement (hence,
the underline in U s

1). Utility values are universally smaller in state zb and decrease at faster
rates than state zv throughout. Utility spikes for a single period (10 < g1 < 11), which
coincides with the zb contract interval no longer overlapping with zv (see figure 2). The
cost of maintaining each network tie, arbitrarily set to α(g1) = .1 + .001g1.21 is increasing in

network size and intersects with U
zb

1 at a threshold of g1 = 15. Beyond this point, household

1 shuts down all gift transactions when it reaches the zb state. We plot U
zb

1 without the

possibility of shutdown; however, utility is U
zb

1 = 0 whenever g1 > 15.
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Figure 4: Amount of Transfer by Network Size
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Note: This figure represents transfer amounts τ s from household 1 to household 2 when
household 2 takes the entire share of the surplus (U s

1 is set to zero) and when household 1
wins a cash prize. Thus, it also represents the average transfer amount from household 1
to any other household in its gift network when it wins a cash prize. The average transfer
amount is generally smaller when household 1 wins the publicly revealed prize (zb) relative
to when it wins the privately revealed prize (zv). Transfers are reduced to zero beyond
household 1’s shutdown point (g1 = 15).
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Figure 5: Experimental Data: Lottery Payouts
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Figure 6: Shut-down Hypothesis on Number of Gifts Given
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Note: Dependent variable equals number of gifts given. Estimation of equation 14 with
the inclusion of 2nd, 3rd, and 4th order polynomial interactions on network-size variable.
Results indicate that the coefficient is equal to zero when solidarity network consists of 11
households (within-sample).
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Figure 7: Nonparametric Analysis of Shut-down Hypothesis on Total Value
of Gifts
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Note: Locally smoothed polynomial of total gift-giving as a function of network size. Variable
on the Y-axis is total value of gifts given minus household average across rounds. Red-line
only includes sample of individuals who won privately revealed lotteries. Blue line only
includes sample of individuals who won publicly revealed lotteries. At small network-size
values, total gifts given by public lottery winners is slightly higher than private lottery
winners. This relationship remains flat and is inverted at a network size of roughly 20
at which point total gifts given by publicly revealed lottery winners starts to decrease —
indicating behavior consistent with the shut-down hypothesis.
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Figure 8: Effects of Network Lottery Winnings on Food Consumption
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Note: Figure represents coefficient estimates of quantile regression of equation 15 (HH fixed
effects replaced by village fixed effects due to dimensionality constraints). Dependent variable
equals log per-capita food consumption. Simultaneous quantile regression estimator with
100 bootstrap repetitions. Only first three rounds of data used — these periods coincide
with Southern Ghana’s hungry season. Blue represents average network treatment effect
of privately revealed lottery winnings and red represents publicly revealed lottery winnings.
Evaluated at the 1%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, and 70%-tiles. Per-capita food
consumption more likely to increase for lowest quantiles following solidarity network’s private
lottery winnings relative to public lottery winnings.
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Appendix Materials

A Adding a Sequence of History-dependent Nash

Equilibria (SHDNE) Transfers to Our Model

Households can default to an SHDNE (instead of a no-transfer equilibria) and transfer

amounts in such settings will depend on the level of altruism between household 1 and

2 and the number of household 1’s outstanding gift-commitments. The SHDNE transfer,

τD(ht), given history ht is

τD(ht) =



r s.t. u′1(y1(st)− r)/u′2(y2(st) + r) = γ1(g1(ht))

if u′1(y1(st))/u
′
2(y2(st)) < γ1(g1(ht))

r s.t. u′1(y1(st)− r)/u′2(y2(st) + r) = 1/γ2(g1(ht))

if u′1(y1(st))/u
′
2(y2(st)) > 1/γ2(g1(ht))

0 otherwise.

(18)

In other words, 1 will transfer to 2 when 2’s marginal utility of consumption at his state-

specific income level is high enough relative to individual 1’s history-dependent gift-network

size. Similarly 2’s transfers to 1 will depend on 2’s history-dependent gift-network size. In

either case, the SHDNE transfer is voluntary and not contingent on any requirement for the

recipient party to reciprocate in a future period.

To set up the household’s problem with default to SHDNE transfers after history ht, U1(ht)

can be re-written in the following manner:

U1(ht) = u1(y1(st)− τ(ht))− u1(y1(st)− τD(ht))

+ γ1(g1(ht))u2(y2(st) + τ(ht))− γ1(g1(ht))u2(y2(st) + τD(ht))

+E

∞∑
k=t+1

δk−t

{
u1(y1(sk)− τ(hk))− u1(y1(sk)− τD(ht))

+γ1(g1(ht))u2(y2(sk)− τ(hk))− γ1(g(ht))u2(y2(sk)− τD(ht))

}
− α1(g

D
1 (ht))

(19)

where instead of only receiving income y1(st) in each period after ht, household 1 will subtract

net SHDNE transfers as well. The rest of the maximization problem is straightforward to

compute once a functional form for utility is identified.
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Table B.1: Individual Summary Statistics

N Mean Sd 5 p-tile 95 p-tile

Fixed Over Time:

HH size 606 5.09 2.23 2 9

Gift Network Size 597 9.94 10.10 0 31

Gifts and Loans (last 2 months):

N Gifts Given 2,983 0.82 1.37 0 4

N Gifts Received 2,983 0.30 0.80 0 2

N Loans Given 2,983 0.16 0.51 0 1

N Loans Taken 2,983 0.07 0.29 0 1

Total Value of all Gifts Given 1,175 20.02 75.25 1 66

Total Value of all Gifts Received 542 12.58 35.75 1 35

Total Value of all Loans Given 362 57.00 113.25 5 200

Total Value of all Loans Taken 191 54.90 133.46 3 220

Food Consumption (last month): HH Head Spouse P-value Total SD

PC Food Consumption 10.43 16.71 0 26.45 20.77

PC Purchased Food 3.11 15.86 0 19.42 18.83

PC Home-produced Food 7.78 1.60 0 8.63 7.98

Gift Network data missing for a subset of observations. N of loans/gifts given equal zero if none
given/received. Value of gifts/loans contingent on having received at least one. Gift/loan data
excludes within-household transfers and “Gifts Receives” and “Loans Taken” exclude all gifts or
loans that originate outside of the study village. Household food consumption (total) sums the head
of households and spouse’s response. P-value is t-test significance of difference in category of food
spending between HH head and spouse.
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Table B.2: Lottery Winnings

Variables: N Mean Sd

Own Lottery Winnings:

Cash - Private 1,288 1.21 5.70

Cash - Public 1,288 1.12 5.52

Gift-Giving Network Average Lottery Winnings:

Friends Cash-Private 1,184 1.17 1.64

Friends Cash-Public 1,184 1.16 1.45

Friend lottery winnings multiply the vector of lottery winners by
the row-normalized gift network adjacency matrix (result is average
friends’ lottery winnings).
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Table B.3: Household Summary Statistics

N Winners Win-at-all Win-Private Win-Public

N-No N-Win Diff P-Value Diff P-Value Diff P-Value

Fixed Over Time:

HH size 190 119 0.31 0.22 0.56 0.06* -0.04 0.91

N Mutual Gifts 190 119 -0.52 0.66 -0.78 0.57 0.24 0.86

Gifts and Loans (last 2 months):

N Gifts Given 190 119 0.14 0.64 0.07 0.85 0.34 0.32

N Gifts Received 190 119 0.11 0.46 0.18 0.28 0.11 0.52

N Loans Given 190 119 0.08 0.45 -0.09 0.49 0.12 0.36

N Loans Taken 190 119 -0.05 0.32 -0.06 0.26 -0.00 0.95

Food Consumption (last month):

PC Food Consumption 187 117 -0.75 0.79 -4.40 0.18 2.49 0.44

PC Purchased Food 187 117 -0.02 0.99 -1.97 0.49 2.04 0.47

PC Home-produced Food 187 117 -0.73 0.49 -2.43 0.05** 0.45 0.71

Balance test of round 1 observations. categorizes households according to those who won either lottery
at any point during the course of the year (N-No, number of HH that did not win; N-Win, number of
HH that did win). represents either lottery. represents those who only won private (public) lotteries.
All P-Values represent two-tailed hypothesis tests (t-statistics).
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Table B.4: Gift Network = MMG

No Interaction Shut-down Hypothesis

(1) (2) (3) (4) (5) (6)

N Mutual Gifts = 0 -0.488∗∗ 0.118 -0.396∗∗ -0.491∗∗ 0.102 -0.398∗∗

(0.215) (0.197) (0.163) (0.215) (0.189) (0.161)

N Mutual Gifts 0.050∗∗∗ 0.021∗∗∗ 0.020∗∗∗ 0.055∗∗∗ 0.023∗∗∗ 0.022∗∗∗

(0.008) (0.006) (0.006) (0.008) (0.006) (0.006)

Private Cash Winnings 0.085 0.038 0.062 0.047 -0.003 0.040

(0.086) (0.035) (0.040) (0.127) (0.047) (0.063)

Public Cash Winnings 0.179∗∗ 0.072 0.052 0.499∗∗∗ 0.200∗∗∗ 0.205∗∗

(0.086) (0.046) (0.051) (0.127) (0.066) (0.080)

N Mutual Gifts × Private Cash Winnings 0.003 0.003 0.002

(0.008) (0.003) (0.004)

N Mutual Gifts × Public Cash Winnings -0.031∗∗∗ -0.013∗∗∗ -0.015∗∗∗

(0.009) (0.005) (0.005)

Village FE Yes Yes Yes Yes Yes Yes

Round FE Yes Yes Yes Yes Yes Yes

N 1645 1602 1645 1645 1602 1645

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Dependent Variable equals log of gifts given in columns 1 and 4,
number of gifts given in column 2 and 5, and value per gift in columns 3 and 6. Village and Round
Fixed Effects Included in Every Specification. Tobit regression in columns 1, 3, 4 and 6 with a lower
bound of zero (no upper bound); poisson regression in columns 2 and 5.
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Table B.5: Dyadic Regressions - Pooled Base Test

Pooled - HH FE Pooled - TGT HH FE

Log(Amountijt) Numberijt Log(Amountijt) Numberijt

main

Network Sizei 0.030 0.014

(0.028) (0.015)

Mutual Giftij 4.488∗∗∗ 2.380∗∗∗

(0.601) (0.306)

Network Sizei × Mutual Giftij -0.047 -0.020

(0.036) (0.020)

Lottery-Privateit 0.486 0.255 0.211 0.065

(0.434) (0.238) (0.284) (0.156)

Lottery-Publicit 0.134 0.094 0.439∗∗ 0.297∗∗

(0.184) (0.089) (0.200) (0.123)

Lottery-Privateit -0.151∗∗ -0.087∗∗ -0.099∗∗∗ -0.050∗∗

× Network Sizei (0.060) (0.034) (0.037) (0.020)

Lottery-Publicit -0.027 -0.019∗ -0.033∗ -0.026∗

× Network Sizei (0.018) (0.010) (0.019) (0.014)

Lottery-Privateit 1.158∗∗ 0.462 0.525 0.306

× Mutual Giftij (0.560) (0.297) (0.434) (0.201)

Lottery-Publicit 1.279∗∗∗ 0.425∗ 0.093 -0.137

× Mutual Giftij (0.420) (0.244) (0.374) (0.194)

Lottery-Privateit 0.106∗ 0.072∗∗ 0.077∗ 0.045∗∗

× Mutual Giftij × Network Sizei (0.062) (0.035) (0.039) (0.020)

Lottery-Publicit -0.004 0.008 0.011 0.016

× Mutual Giftij × Network Sizei (0.028) (0.016) (0.028) (0.017)

TGT HH FE No No Yes Yes

HH FE Yes Yes No No

Village FE No No No No

Round FE Yes Yes Yes Yes

N 133975 130761 130761 130761

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Dependent variable in odd columns equals amount of actual gift given from i to j in
any given round t; Even columns equals number of gifts. ’Network Sizei’ indicates household i’s gift-network size (any
type of gift-relation). Odd columns are tobits with lower bound of zero. Even columns are poisson regressions. Columns
1-2 only include links (i and j) with mutual gift-relations at baseline ( actual gifts given during the 5 rounds). Columns
3-4 include all oher links ( actual gifts given).
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Table B.6: Dyadic Regressions - Food Shocks

Log(Amountijt) Log(Amountijt) Numberijt Numberijt

Mutual Giftij 3.840∗∗∗ 3.603∗∗∗ 2.085∗∗∗ 1.900∗∗∗

(0.332) (0.322) (0.197) (0.180)

Lottery-Privateit -0.449∗ -0.473∗ -0.278∗ -0.287∗

(0.248) (0.260) (0.145) (0.148)

Lottery-Publicit 0.061 0.012 0.041 0.016

(0.180) (0.188) (0.114) (0.100)

Food-Shockijt -0.063 -0.098 -0.055 -0.043

(0.215) (0.187) (0.119) (0.101)

Food-Shockijt -0.155 -0.105 -0.054 -0.049

× Mutual Giftij (0.313) (0.262) (0.161) (0.125)

Gift-Network Interaction

Lottery-Privateit 0.711∗∗ 0.675∗∗ 0.559∗∗∗ 0.486∗∗∗

× Mutual Giftij (0.335) (0.318) (0.170) (0.161)

Lottery-Publicit 0.034 0.279 -0.071 0.045

× Mutual Giftij (0.269) (0.271) (0.151) (0.139)

Food-Shock Interaction

Lottery-Privateit -0.467∗ -0.560∗ -0.258∗∗ -0.295∗

× Food-Shockijt (0.258) (0.301) (0.129) (0.151)

Lottery-Publicit 0.494∗∗ 0.623∗∗ 0.247∗ 0.309∗∗

× Food-Shockijt (0.252) (0.265) (0.141) (0.122)

Triple Interaction

Lottery-Privateit 1.043∗∗∗ 1.014∗∗∗ 0.394∗∗∗ 0.337∗

× Food-Shockijt × Mutual Giftij (0.312) (0.381) (0.138) (0.190)

Lottery-Publicit -0.792∗∗ -0.894∗ -0.337∗ -0.414∗

× Food-Shockijt × Mutual Giftij (0.350) (0.476) (0.177) (0.236)

HHN FE No Yes No Yes

TGT HHN FE Yes No Yes No

Round FE Yes Yes Yes Yes

N 110721 110721 110721 110721

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Dependent variable in columns 1-2 equals amount of actual gift given from i to j
in any given round t; in columns 3-4 it equals number of gifts. ’Food-Shockijt’ indicates the difference between i and j
estimated food consumption residual (χ̂i − χ̂j — household and round fixed effects). Columns 1-2 estimated using tobit
estimator with lower bound on dependent variable of zero. Columns 3-4 use poisson estimator. ’Mutual Giftij ’ refers to
the existence of reciprocal gift-relationships between i and j.
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C Appendix Figures

Figure C.1: Amount of Total Transfers by Network Size
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Figure C.2: Local Polynomial Smoothing - Shut-down Hypothesis
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Note: Values on the y-axis adjusted for household fixed effects. See description in figure 7
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Figure C.3: Results of Quantile Regression by Quantile - All Rounds

−
.2

0
.2

.4
E

ffe
ct

 S
iz

e

10 20 30 40 50 60 70

Quantile

βvn βbn

Note: Estimation of equation 15 using simultaneous quantile regression estimator (100 boot-
strap repetitions). Dependent variable equals log per-capita food consumption. All rounds
of data used. Blue represents average network treatment effect of privately revealed lottery
winnings and red represents publicly revealed lottery winnings. Evaluated at the 1%, 5%,
10%, 15%, 20%, 30%, 40%, 50%, and 70%-tiles. Coefficient estimates offset relative to x-axis
for ease of viewing.
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