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1 Introduction

Climate change has had a significant impact on weather patterns throughout the world. Ac-

cording to the first Intergovernmental Panel on Climate Change (IPCC) report, this impact is likely

to continue in to the near future with a projected increase in mean global surface temperatures of

5°F and a projected increase in mean precipitation of 8 percent by the second half of the 21st cen-

tury. Given the implications for human welfare, fully understanding the impact of these changes

in climate on agricultural outcomes is of first-order importance. In the case of precipitation, an

emerging consensus in the current literature is that higher precipitation either has no effect on

agricultural output (Dell, Jones, and Olken, 2012) or that it actually increases agricultural profits

(Deschênes and Greenstone, 2007) and economic growth (Barrios, Bertinelli, and Strobl, 2010).

In this paper, we show that this average effect masks the fact that increases in rainfall can

create both winners and losers. Central to this novel finding is our focus on identifying the spatial

spillover effect of rainfall. To better understand why this matters, consider an agricultural house-

hold in district d. Greater rainfall in d will increase this household’s crop output and, for a given

crop price, increase its income. However, as we show below, patches of high or low rainfall tend

to span multiple districts. Thus, if district d experiences greater rainfall then so will other neigh-

boring districts. The resulting rainfall-induced supply shock in neighboring areas will lower crop

prices, which in turn will lower farm incomes in district d. This adverse spatial spillover effect

will generally attenuate the positive effect of own-district rainfall and in some cases may even

dominate it.

To explore this spillover effect empirically, we use household-level, panel data from India

along with high-resolution meteorological data to examine whether rural household consumption

depends on rainfall shocks in its own district as well as rainfall shocks in neighboring districts.

For a given district d, the former is defined as the deviation in a district’s rainfall in a given year

from its long-term average, which is then normalized by its long-term standard deviation.1 In

contrast, the latter is defined as the weighted average of own-district rainfall shocks in all other

1Such an approach to calculating rainfall shocks has been used by Barrios, Bertinelli, and Strobl (2010), Cole, Healy,
and Werker (2012), and Emerick (2016), among others.
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districts j in the sample, where the weights are the inverse of the distance between d and j.2

Our identification strategy incorporates household fixed effects, which allows us to purge the

effect of any unobserved, time-invariant household and district characteristics. Thus, our results

are identified from within-district variation in own rainfall and neighbor’s rainfall from its long-

term average. Conditional on including household fixed effects, these deviations are likely to be

orthogonal to unobserved determinants of rural household consumption and allow us to iden-

tify the causal effects of rainfall shocks. Further, our choice of India as a setting for this analysis

provides us with an important benefit in implementing this identification strategy. As a geograph-

ically large country, India experiences significant spatial and temporal variation in weather pat-

terns. As we document below, this ensures that we have sufficient variation in rainfall to identify

our key results.3

Our results indicate that both own-district rainfall shocks and neighbor’s rainfall shocks have

a statistically and economically significant effect on rural household consumption. We find that

greater own-district rainfall results in an increase in household consumption. This confirms the

positive effect of own-region rainfall that has been documented by Deschênes and Greenstone

(2007), among others. We also find that a rainfall shock in neighboring districts has a large nega-

tive effect on household consumption. This suggests that a neighbor’s rainfall shock significantly

attenuates the consumption benefits of own-district rainfall.

Further, our estimates indicate that this attenuating effect is economically significant. For

instance, if we ignore the spatial spillover effect of neighbor’s rainfall shocks, we find that a one-

standard deviation increase in a district’s own rainfall shock raises household consumption by

7.72 percent. However, after accounting for the adverse spatial spillover effect, we find that a

one-standard deviation increase in a district’s own rainfall shock raises household consumption

by just 2.54 percent. These results provide empirical support to the view posited by Dell, Jones,

2These inverse distance weights ensure that rain shocks in nearby districts play a greater role in determining the
size of the neighbor’s rainfall shock.

3A second benefit of studying this issue in India is that the agricultural production there is mainly un-irrigated and
rain-fed and the sector plays a dominant role in the overall economy. For instance, agriculture accounts for 49 percent
of India’s total employment and 52 percent of agricultural land is un-irrigated and rain-fed (Economic Survey, 2018).
Thus, any adverse spatial spillover effect of rainfall is likely to be of first-order importance in India.

3



and Olken (2014) that the spatial spillover effects of weather shocks are likely to be of first-order

importance. Further, these results also suggest that greater rainfall can create both winners and

losers. More precisely, households that reside in districts with a low-to-moderate own-rainfall

shock and a large neighbor’s rainfall shock may be made worse off from increases in precipitation.

As mentioned above, our finding of a negative spatial spillover effect can be explained by

a decrease in crop prices and agricultural income as a result of greater rainfall in neighboring

districts. We empirically examine whether these channels are supported by the data. To do so,

we first use ICRISAT crop-price data to examine whether a rainfall shock in neighboring districts

leads to a reduction in crop prices. These data, which are at the crop and district level, allow us

to regress the natural logarithm of crop prices on a district’s own rainfall shock and its neighbor’s

rainfall shock. We further control for crop, district, and year fixed effects in these regressions. Our

results suggest that a higher neighbor’s rainfall shock does indeed lower crop prices in a district.

Next, we use our baseline household data to regress a household’s agricultural income on its

own-district rainfall shock as well as neighbor’s rainfall shock. Consistent with our story above,

we find that households that experience a higher neighbor’s rainfall shock experience a reduction

in their agricultural income. We find no such effect on non-agricultural salaries and wages as

well as on remittances. This suggests that a neighbor’s rainfall shock affects rural household

welfare through its adverse effect on the agricultural sector. To further confirm this, we show

that the negative effect of a neighbor’s rainfall shock on household consumption only holds for

households that report agriculture as their main source of income. All of these results confirm

that the price-based mechanism outlined above is a plausible explanation for our spatial spillover

effect.

Our paper is related to a sparse literature that documents the spatial spillover effects of

weather shocks. For instance, Burgess and Donaldson (2012) examine whether openness to trade

reduces or exacerbates the sensitivity of real incomes to productivity shocks in India. As part of

their overall analysis, they show that crop prices in a particular district are negatively related to

rainfall in neighboring districts. However, they do not examine the effects of rainfall in neighbor-

ing districts on rural household consumption. This is important because even when rainfall in
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neighboring areas lowers crop prices, its effect on rural household consumption is theoretically

ambiguous. As consumers, these households gain from the lower crop prices. However, as pro-

ducers, these households lose from the lower crop prices since it lowers their farm income. Thus,

the net effect of such a crop price reduction on rural household welfare is theoretically ambiguous

and is therefore an empirical question. A key advantage of our paper is that we have the disag-

gregated data necessary to examine the household welfare implications of a neighbor’s rainfall

shock.4

Our paper is also related to a literature that examines the effect of climate change induced

variation in temperature and rainfall on agricultural outcomes. This literature can be roughly

divided in to three categories. The first relies on experimental data to calibrate an agricultural

production function and then uses the latter to simulate the effect of climate change on crop out-

comes (Adams, 1989; Adams et al., 1995). A second category of studies uses cross-sectional regres-

sions to estimate the effects of climate change on agricultural outcomes (Mendelsohn, Nordhaus,

and Shaw, 1994; Schlenker, Hanemann, and Fisher, 2006). Lastly, a third category uses panel ap-

proaches to estimate the effect of climate change on agricultural outcomes (Deschênes and Green-

stone, 2007; Dell, Jones, and Olken, 2012). Our contribution to this literature is that in addition to

examining the effect of own-region rainfall with panel data, we also examine the spatial spillover

effect of rainfall in neighboring regions.

Finally, our paper is also related to an extensive literature that documents the welfare conse-

quences of weather-induced productivity shocks in developing countries. Using weather extremes

as an exogenous shock to agricultural productivity, these studies find that weather shocks in an

area have a significant impact on agricultural production, employment, and wages (Jayachandran,

2006; Kaur, 2018; Emerick, 2016). Weather shocks have also been shown to have a significant effect

on human capital formation in the developing world (Maccini and Yang, 2009; Shah and Stein-

berg, 2017). We add to this literature by considering the spatial spillover effect of rainfall shocks

4Boustan, Rhode, Kahn, and Yanguas (2017) construct a measure of natural disasters for U.S. counties that account
for both own-county disasters as well as disasters that occur in nearby counties. Unlike our analysis, they do not
separately estimate the effect of an own-county disaster shock and a neighbor’s disaster shock. As a result, they are
unable to examine whether the latter effect differs substantially from the former.
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in neighboring areas on rural household welfare.

We structure the rest of the paper as follows. In section 2, we use a conceptual framework to

highlight the theoretically ambiguous relationship between rainfall in neighboring districts and

rural household welfare. In section 3, we describe our household-level, panel data as well as our

rainfall data. In this section, we also describe how we construct our own-rainfall and neighbor’s

rainfall shock variables. In section 4, we describe the empirical strategy we use to identify the

impact of rainfall shocks on household consumption. In section 5, we present our baseline results

and address key econometric issues. In section 6, we explore the potential channels through which

rainfall shocks in neighboring districts affect household consumption. Finally, in section 7 we

provide a conclusion.

2 Conceptual Framework

In this section, we use the canonical agriculture household model described in Singh, Squire,

and Strauss (1986) to show that increased rainfall in neighboring districts will have an ambiguous

effect on rural household consumption. An important benefit of our discussion below is that it

will highlight the mechanisms that drive the relationship between neighbor’s rainfall shocks and

household consumption. This will allow us to examine whether these mechanisms are supported

by our data in section 6.1. To begin, consider a risk-neutral farmer that consumes a staple, agricul-

tural crop, A. This is a crop that the farmer can either purchase at the retail market or produce on

his own. We consider this farmer’s optimal behavior in two stages.

Stage 1: Production

We assume that at the beginning of the growing season, the farmer must decide how much

of the staple crop to produce. He does so using his fixed amount of arable land as well as his

endowment of family labor, N. We normalize the fixed unit of arable land to one and assume

that the farmer cultivates this land in its entirety,. The farmer’s output of the staple crop is then

determined by the following production function: QA = R̂O f (N), where QA is the quantity of the
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staple crop produced and f is a production function. R̂O is the farmer’s expectation of the amount

of rainfall in his own district during the growing season. Thus, R̂O serves as a productivity shock

for the farmer with greater own-district rainfall resulting in a greater yield of the staple crop,

holding N constant.5

The farmer’s production problem is to pick the level of household farm labor, N, that max-

imizes his profits. The optimal labor choice, N∗, results in the following farm income: Y∗ =

PAR̂O f (N∗)− wN∗, where PA is the price of the staple crop, which we discuss in more detail be-

low, and w is the prevailing wage rate in the district. We assume that the farmer takes this wage

as given. Note here that Y∗ is monotonically increasing in PA and R̂O.

Stage 2A: Price Determination

In the second stage, the actual own-district rainfall during the growing season is realized.

This value of RO along with the optimal labor chosen in the first stage determines the farmer’s

staple-crop yield, Q∗A. The farmer must now decide where to sell his crop, which will determine

the price he receives for them. He can sell his crop at a nearby mandi, which is a government-

regulated wholesale agricultural market. While mandis are open-outcry auctions where farmers

are less vulnerable to being exploited by unscrupulous traders, they also tend to be relatively

costly to get to. Goyal (2010) reports that the typical farmer may have to travel 30 to 40 kilometers

to reach the closest mandi. This may explain why most sales at mandis are made by large farmers

while small farmers sell mostly to local intermediaries (Chatterjee and Kapur, 2016).

Due to this high transportation cost, the farmer can alternatively sell his crop to a local trader.6

If he does so, then the price at which the farmer sells to the trader is determined by a negotiation

process. We assume that both parties can observe the quality of the crop, which means that the

negotiation occurs under complete information. If the negotiation with the trader is successful,

the farmer is able to sell his crop at a price PA. If it is unsuccessful, his outside option is to take his

5As in the canonical version of this agriculture household model, we exclude other intermediate inputs and also
abstract from the possibility that the household may cultivate multiple crops.

6See Chau, Goto, and Kanbur (2009) and Bardhan, Mookherjee, and Tsumagari (2013) for recent models of trans-
actions between farmers and intermediaries in a developing country context and Spulber (1996) for a review of the
general literature on intermediation.
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crop from his district d to the nearest mandi (m) at a transport cost of τdm > 0. At the mandi, the

farmer is a price taker and will receive the following price:

PA =
Pm

A (RN)

τdm
< PA (1)

where the mandi price Pm
A is decreasing in the output of neighboring districts and hence also de-

creasing in the amount of rainfall in neighboring districts, RN .

From the trader’s perspective, if the negotiation is successful then he buys the Q∗A units of

the crop at a price of PA and sells it to processors at a price Pr
A > PA. If negotiations fail, then he

gets zero. We follow Chatterjee (2018) and assume that the farmer and the trader engage in Nash

bargaining where the farmer’s bargaining weight is δ. This results in the following price for the

staple crop:

PA = (1− δ)PA(RN) + δPr
A (2)

Equation (2) suggests that greater rainfall in neighboring districts, RN , will lower the price

received by the farmer for his crop, PA, by weakening his outside option, PA.7

Stage 2B: Consumption

Having negotiated a price for his staple crop in stage 2A, the final step for the farmer is

to decide his family’s total consumption. We assume that the farmer’s utility depends on his

family’s consumption of the staple crop, CA, as well as his family’s total leisure time, L. Leisure

is simply the total time endowment, T, minus the hours of farm labor, N. Given crop price PA

and his farm income Y∗, we know that his optimal consumption of the staple, CA, can be written

as CA = C(PA(RN), Y∗(RO, RN)). In turn, this allows us to write the effect of greater rainfall in

7We are abstracting here from the presence of minimum support prices (MSP) that the Indian government uses to
place a floor on the price of certain agricultural commodities. In principle, such a policy will attenuate the effect of RN

on PA by setting a lower bound on the latter. Thus, incorporating this in our framework above will not qualitatively
change our predictions. We chose to abstract from this as there is evidence that these MSP’s are not fully effective. For
instance, Aditya et al. (2017) show that less than 25 percent of farmers in their data are even aware of what the MSP is
for their crops.
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neighboring districts, RN , on household consumption as

dCA

dRN =
∂CA

∂PA
× ∂PA

∂RN︸ ︷︷ ︸
Own-Price Effect

+
∂CA

∂Y∗
× ∂Y∗

∂PA
× ∂PA

∂RN︸ ︷︷ ︸
Farm-Income Effect

(3)

Equation (3) suggests that greater rainfall in neighboring districts will affect a farmer’s con-

sumption through two distinct channels. The first term on the right-hand-side indicates that by

lowering the price of the farmers staple crop, greater rainfall in neighboring districts will raise a

farmer’s consumption. This is the own-price effect. On the other hand, the second term on the

right-hand-side indicates that by lowering the income earned from its staple crop, greater rainfall

in neighboring districts will lower a farmer’s consumption. This is the farm-income effect. Thus,

the net effect of greater rainfall in neighboring districts on this farmer’s consumption is ambigu-

ous. Which of these two channels will dominate is therefore an empirical question.

3 Data

3.1 Household Data

We use household data from the Indian Human Development Survey (IHDS). IHDS is a na-

tionally representative longitudinal household survey and are available for two rounds, 2004–05

and 2011–12 (Desai et al., 2005; Desai and Vanneman, 2012). The raw data cover households in

1,503 villages and 971 urban areas across India. However, given that we are interested in the effect

of rainfall on agricultural household consumption, we restrict our sample to rural households that

are observed in both periods.8 This results in a working sample that consists of 28,087 households

in 283 districts across India.9

Our key outcome variable is each household’s total consumption expenditure per capita.

8The only exception to this restriction are new households in 2011–2012 that split off from households in 2004–2005.
We retain these households even thought they appear in only IHDS2.

9To minimize measurement error in our data, we eliminate households that report negative values for consumption
per capita, educational expenses, and medical expenses. We also omit households that report negative values for
whether or not they own/cultivate land.
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IHDS constructs this using expenditure on a a series of food and non-food items. They use a mixed

recall period - a 30-day recall period for more frequently purchased items and a 365-day recall pe-

riod for infrequently purchased non-food items. To calculate monthly per capita consumption

expenditure, they divide expenditures on infrequently-purchased items by 12 before adding it to

the total expenditure on frequently-purchased items. They then divide total household consump-

tion expenditure by the number of household members. This yields each households nominal

consumption per capita. To convert these to real values, we use the deflator provided in the raw

data. This results in final consumption values that are in constant 2005 Rupees.

Unlike other commonly used household surveys in India, the IHDS data have the advantage

that it follows households over time. This provides us with two benefits. First, we can include

household fixed effects in our baseline econometric specification. This allows us to control for

unobservable, time-invariant household characteristics that may otherwise bias our results. It also

allows us to account for unobservable, time-invariant district characteristics such as topographical

features that may be correlated with both rainfall and agricultural production. Second, the panel

nature of the data allows us to use a balanced sample of households that appear in both survey

rounds in our baseline specifications. This ensures that our key results are not being driven by

attrition, household migration, or other endogenous compositional changes in the sample.

Table 1 provides descriptive statistics of the households in our IHDS sample. The average

household has monthly consumption expenditure of approximately 876 Rupees per person and

20.41 percent of these households are below the official poverty line.10 The households in our

sample are also highly dependent on agricultural production, with 55.17 percent of households

reporting agriculture as their main source of income. In addition, the average household in our

sample has 5.48 members and 1.75 children. On average, 88.50 percent of households have a male

head with an average age of 48.95 and 83.02 percent of households are Hindu.

Our analysis rests on the assumption that households in our sample produce crops for sale

to traders and/or agricultural markets. If the households in our sample are mainly subsistence

10The monthly expenditure is equivalent to 20.14 U.S. dollars per person in 2005. The poverty indicator is as provided
in the IHDS data. This indicator is calculated using the Indian Planning Commission poverty line.
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farmers with little or no connection to markets then we would not expect changes in market prices

to impact household consumption. Similarly, if the households in our sample reside in isolated

areas that are far removed from local markets, then rainfall-induced price changes in neighboring

markets may have little impact on local prices.11

To explore these issues further, we report summary statistics on crop sales and market access

indicators in Table 2. In Panel A, we examine whether households in our sample are active par-

ticipants in markets. The data we use to construct the summary statistics in Panel A were only

collected during the 2004–2005 IHDS round. Despite this, they provide a useful snapshot of the

degree of market participation among the households in our sample. The data suggest that only 3

percent of households in our sample are sharecroppers. Further, 59.84 percent of the households

in our sample sell their crops with these sales representing, on average, 34.39 percent of their to-

tal production. These numbers suggest that, while the households in our sample are poor, they

nonetheless actively sell their crops to traders and/or in agricultural markets.

In Panel B of Table 2, we use various village-level market access measures to examine how

isolated the households in our sample are. Unfortunately we do not have household-level data

on the distance to the nearest wholesale market, so instead we use several village-level proxies of

market access instead. These results suggest that 94.32 percent of villages in our sample are acces-

sible by road. Further, on average, the villages in our sample are 6.37 kilometers away from the

nearest agricultural retail market and 14.26 kilometers away from the nearest town.12 This sug-

gests that the households in our sample are not so isolated that we can dismiss the pass through

of rainfall-induced price changes in neighboring markets on to local prices.

11Recall from equations (1) and (2) that
dPA
dRN =

(
1− δ

τdm

)
×

dPm
A

dRN

Thus, the pass-through of a neighbor’s rainfall shock on to local crop prices is inversely proportional to how far
a household is to the regional market, τdm. Extremely isolated households, i.e. high τdm, may have a very small pass
through.

12Note that these agricultural retail markets are not the same as the wholesale markets (i.e. the mandis mentioned in
section 2).
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3.2 Rainfall Data

We pair our household data with rainfall data from the ERA-Interim Reanalysis Archive.

These daily data are available at a 0.25o × 0.25o grid level for the period 1979 to 2015 (Dee et al.,

2011). These reanalysis data combine ground station and satellite data with results from global cli-

mate models to create consistent measures of precipitation at a spatially granular level (Auffham-

mer, Hsiang, Schlenker, and Sobel, 2013). When compared to standard rainfall data from ground

stations, using such reanalysis data has the advantage that we do not need to worry about the

endogenous placement of ground stations as well as spatial variation in the quality and quantity

of rainfall data that is available (Colmer, 2016).

To merge these data with our IHDS household survey data, we first overlay the GIS bound-

aries of each district in our IHDS sample on the gridded climate data. We then calculate the total

rainfall in each district by using the weighted average across all grids that fall within a district. The

weights are the inverse distance between each district’s centroid and each grid point. Finally, we

sum the daily rainfall data over the period June to September to calculate total monsoon rainfall

for each district in our sample in a given year. In Figure 1, we plot the trend in average monsoon

rainfall in our sample over the period 1979 to 2011. As is evident from this figure, average rain-

fall in India has been increasing during this period. Further, there is also substantial year-to-year

variation in monsoon rainfall.

To capture a district’s own rainfall shock, we follow Barrios, Bertinelli, and Strobl (2010),

Cole, Healy, and Werker (2012), and Emerick (2016) and create a rainfall anomaly measure for

each district. This anomaly measure captures the deviation in a district’s monsoon rainfall in any

given year from the long-term monsoon average and is normalized by the long-term standard

deviation. More precisely, for a district d in year t, we define its own rainfall shock as

RO
dt =

Rdt − Rd

Sd
(4)

where Rdt is the total monsoon rainfall in a district in year t and Rd is each district’s average

monsoon rainfall over the entire period for which we have data (1979 to 2015). Similarly, Sd is
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each district’s monsoon rainfall standard deviation during the 1979 to 2015 period. Thus, a higher

value of RO
dt indicates that a district received total monsoon rainfall in a year that was above its

long-term average.13

In Figure 2 we illustrate the spatial variation in rainfall in India by plotting rainfall anomaly

shocks at the district level by year. These maps yield two important insights. First, it highlights

the inter-temporal variation in rainfall during our sample period. For instance, we observe that

2005 was a relatively dry year compared to 2011. This figure also makes clear the significant

within-district variation in the data. The second important insight is that rainfall is highly spatially

clustered. From Figure 2 we can see that in 2004 the low rainfall shocks were clustered in the

north and south-west regions of India. In 2011, the higher rainfall shocks were concentrated in

the central and south-west regions of the country. This spatial clustering of rainfall reinforces the

point that if a household’s own district receives a high (low) rainfall shock, then nearby districts

are also highly likely to receive a high (low) rainfall shock. This suggests that to correctly account

for the overall effect of rainfall on household welfare, one must also account for rainfall in nearby

areas.

To examine this spatial spillover effect, we use the following measure of rainfall in neighbor-

ing districts:

RN
dt = ∑

j 6=d

(
1

ωdj
× RO

jt

)
(5)

where j indexes all other districts in the sample and ωdj is the straight-line distance (in kilometers)

between the centroids of d and j. We normalize this distance to ensure that the ratio 1/ωdj sum to

one. Finally, RO
jt is the own rainfall anomaly shock in district j and year t. Thus, for each district

d in year t, equation (5) provides us with a weighted average of rainfall shocks experienced by

all other districts in the sample, where the weights are the inverse of the distance between d and

j. These inverse distance weights ensure that rain shocks in nearby districts play a greater role in

determining the size of RN
dt.

14 The correlation coefficient between a district’s own rainfall shock,

13In addition to using this rainfall anomaly shock, we also follow Jayachandran (2006) and construct a categorical
variable that takes the value of one if a district’s rainfall in year t is above it’s 80th percentile rainfall value over the
period 1979 to 2015. All other districts have an own rainfall shock value of 0 (no rainfall shock)

14This measure of neighbor’s rainfall shock builds on measures of market access that is frequently used in the trade
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RO
dt, and its neighbor’s rainfall shock, RN

jt , is 0.77. Such a high correlation follows naturally from

the spatial clustering of rainfall evident in Figure 2. Summary statistics for all rainfall variables

used in the paper are reported in Table 3.

4 Econometric Strategy

In this section we describe the econometric specification we use to examine the effect of both

own rainfall shocks and neighbor’s rainfall shocks on household consumption. In section 2, we

showed that an agricultural household’s total consumption will depend on the price of crops and

its total farm income. Farm income will depend on the rainfall in the household’s own district

while both crop prices and farm income will depend on rainfall in neighboring districts. To cap-

ture these effects, we posit the following reduced-form specification:

ln (Chdt) = α + β1RO
dt + β2RN

dt + γ1Xhdt + θh + θt + εhdt (6)

where Chdt is the total consumption for household h in district d and year t, RO
dt is a district d’s

own district rainfall shock, and RN
dt is the rainfall shock in neighboring districts. Our coefficient

of interest is β2. If a positive rainfall shock in neighboring districts has a negative effect on a

household’s income, then we would expect β2 to be negative.

Xhdt is a set of household-level variables that is likely to determine its total consumption. This

set includes an indicator for whether the household head is male, the household head’s age and

its square, and the number of children in the household. θt is a year fixed effect that captures any

country-wide shocks that might be related to household consumption while εhdt is a classical error

term.

Importantly, our baseline specification incorporates household fixed effects, θh. This provides

us with several key advantages. First, a negative β2 could reflect the impact of differential crop

choices. For instance, it could be the case that households that grow higher-priced or higher-

and economic geography literature. See Donaldson and Hornbeck (2016) for a recent example.
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yield crops tend to endogenously locate in districts with a lower probability of a large neighbor’s

rainfall shock. In other words, households in these districts cultivate different crops compared to

households in districts that tend to receive larger neighbor’s rainfall shocks. To the extent that

these crop choices are time invariant, our household fixed effects will capture this confounding

effect. Second, these fixed effects will also account for time-invariant, district-specific factors such

as its topographic features and other locational features such as distance to the nearest mandi that

might affect a household’s total consumption.

Another advantage of including household fixed effects is that it allows us to purge the effect

of other unobserved, time-invariant household characteristics such as a household’s religion, caste

status etc. that might impact its consumption. Finally, these fixed effects will also allow us to

capture a household’s bargaining power in negotiations with a local trader, which we showed in

section (2) will affect how rainfall in neighboring districts affect the price a household receives for

its crops.

While the inclusion of household fixed effects has key advantages, it is worth noting that

our rainfall shock measures, RO
dt and RN

dt, vary by district and year and not by household. Thus,

the inclusion of household fixed effects means that our results are identified from within-district

variation in own rainfall and neighbor’s rainfall from its long-term average. As we argued above,

conditional on including household fixed effects, these deviations are likely to be orthogonal to

unobserved determinants of rural household consumption and allow us to identify the causal

effects of own rainfall shocks as well as rainfall shocks in neighboring districts. In addition, as

is clear from Figure 2, there is significant within-district, temporal variation in our rainfall data.

This allows us to identify β1 and β2. Nonetheless, we show below that our results are robust to

excluding household fixed effects.
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5 Results

5.1 Baseline Results

We report our baseline results in Table 4. In column (1) we estimate a parsimonious version of

(6) where we exclude household fixed effects. The coefficient of the own rainfall shock is positive

and statistically significant. This confirms the findings of an earlier literature that document the

positive effects of rainfall on rural household welfare (Deschênes and Greenstone, 2007). How-

ever, the coefficient of the neighbor’s rainfall shock variable suggests that having greater rainfall

in nearby districts lowers a household’s consumption. In other words, while rainfall in a house-

hold’s own district raises its consumption, rainfall in nearby districts has the opposite effect.

In column (2) we add a set of district controls to the specification in column (1) to account for

district-level factors that are correlated with a household’s consumption and may also be corre-

lated with rainfall in a district. These controls include a district’s latitude and longitude, which

are taken from Allen and Atkin (2016). In addition, we also include the natural logarithm of a dis-

trict’s population, the share of workers in a district that are in agriculture, and the share of literate

workers in a district. To ensure that these latter variables are not endogenous to current rainfall,

we use National Sample Survey Organization data from 1987 to construct them. The results in col-

umn (2) suggest that the addition of these additional district controls does not appreciably change

our results.

Next, in column (3) of Table 4 we report the results from estimating equation (6). That is,

we now include household fixed effects in our regression. The inclusion of these fixed effects

account for all time invariant, omitted household and district characteristics that may be biasing

our estimates of the own rainfall shock and the neighbor’s rainfall shock. As the results in column

(3) demonstrate, the effects we have identified thus far remain robust to the inclusion of household

fixed effects. That is, we continue to find that experiencing a greater own rainfall shock raises

household consumption while experiencing a greater neighbor’s rainfall shock lowers household

consumption. In column (3), with the inclusion of household fixed effects, we are relying on
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within-district variation in rainfall to identify our rainfall shock effects. As is clear from Figure 2,

our data does exhibit significant within-district variation in rainfall. Nonetheless, it is reassuring

that our key result remains robust regardless of whether we include household fixed effects.

To gauge how important the spatial spillover effect of rainfall is, note that we can use (6) to

write the effect of an own-district shock (RO) on household consumption (C) as

dln (C)
ddRO = β̂1 + β̂2

dRN

dRO (7)

where the second term on the right-hand-side accounts for the fact that rainfall tends to fall in

clusters that span across districts (see Figure 2). Thus, greater rainfall in a district is likely to result

in greater rainfall in neighboring districts (RN). Now, in the absence of such a spatial spillover

effect, the effect of an own-district rainfall shock is simply β̂1. Given the estimates in column (3) of

Table 4, it follows that a household that experiences a one-standard deviation increase in its own

rainfall shock will experience a 7.72 percent increase in its consumption per capita.

If instead we were to account for the spatial spillover effect, we need to calculate the entire

effect given in (7). To implement this, we first need to estimate dRN/dRO. To do so, we aggregate

our data to the district-year level. We then regress a district’s neighbor’s rainfall shock on its

own-district shock, district fixed effects, and year fixed effects. The resulting coefficient of the

own-district shock is 0.152. This is our estimate of dRN/dRO. Then, if we again use the estimates

in column (3) of Table 4, we find that a a household that experiences a one-standard deviation

increase in its own rainfall shock will experience a 2.54 percent increase in its consumption per

capita. This lower value reflects the fact that β̂2 is negative, which means that households are

made worse off by greater rainfall in neighboring areas.

These results demonstrate that accounting for this spatial spillover effect gives us a more

conservative estimate of the gains from rainfall. In fact, it also suggests that greater rainfall can

create both winners and losers. If a household resides in a district that experiences a moderate-

to-high own rainfall shock and a low-to-moderate neighbor’s rainfall shock, then they will be

better off due to greater rainfall. In contrast, if a household resides in a district that experiences a
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low-to-moderate own rainfall shock and a moderate-to-high neighbor’s rainfall shock, then they

will be worse off due to greater rainfall. These findings suggest that the average effects of rainfall

on various agricultural outcomes found in the earlier literature (Dell, Jones, and Olken, 2012;

Deschênes and Greenstone, 2007; Barrios, Bertinelli, and Strobl, 2010, and others) fail to capture

this important distributional consequence of greater rainfall.

Finally, we examine the non-linear effects of rainfall shocks. More precisely, we augment our

baseline specification in (6) by including a squared term in both own-rainfall and neighbor’s rain-

fall shocks. We report the resulting estimates in column (4) of Table 4. Interestingly, we find that

both the level and squared own-district rainfall coefficients are positive and statistically signifi-

cant. The latter is positive, which suggests that the benefits of own rainfall are increasing in the

level of rainfall itself. In the case of the neighbor’s rainfall shock, we find that only the squared

term is statistically significant. In fact, while the coefficients of both the level and squared terms

are negative, the latter is considerably larger. This suggests that the negative effect of a neighbor’s

rainfall shock that we have documented thus far is being driven by very large neighboring shocks.

Relatively modest rainfall shocks in neighboring areas does not have a statistically significant ef-

fect on household consumption.

5.2 Econometric Issues

Our econometric approach above controls for spatial correlation in rainfall by including a

neighbor’s rainfall shock measure. However, there could also be spatial correlation in the error

term itself in equation (6). To the extent that this is the case, the standard errors we report in Table

4 are incorrect even if our estimate of β2 is unbiased. Our default approach in Table 4 has been

to cluster the standard errors at the district-year level to allow household consumption within

each district and year to be correlated with each other. We now explore an alternate approach to

account for spatial correlation in our error term.

A common approach to adjusting for such spatial correlation is to the use the Conley (1999)

standard-error correction. This approach requires the construction of a spatial variance-covariance
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matrix that incorporates the distance between all observations i and j. In fact, one can combine

this spatial-correlation correction with a standard heteroskedastic and auto-correlation correction

(HAC) to create spatial-HAC standard errors (Hsiang, 2016). We use this approach to estimate

our standard errors in column (1) of Table 5.15 As these results show, our baseline findings are

largely unaffected when we use the spatial-HAC correction. We still find that a higher neighbor’s

rainfall shock has a negative and statistically significant effect on a household’s consumption.

While the Conley (1999) approach is popular, it is also computationally intensive as one must

account for distances between every pair of observations when constructing the spatial variance-

covariance matrix. Given our relatively large, household-level sample, this is an especially acute

computational challenge. In light of this, our choice of district-year level clustering as the baseline

approach follows the advice of Hsiang (2016, pp. 66), who argues that it is “reasonable to estimate

approximate standard errors using simpler techniques, verifying that spatial-HAC adjustments

do not alter the result substantively.”

While our baseline specification allows rainfall to be spatially correlated, there may be other

channels through which rural household consumption is correlated across space. For instance,

nearby districts are likely to have similar farm production technology and soil types (Schenkler

and Roberts, 2009; Chen, Chen, and Xu, 2016). These channels could result in spatial correlation

in Chdt. One way to account for this is to include a spatial lag (LeSage and Pace, 2009). Given that

our unit of observation is a household, a spatial lag in our case is a weighted average of household

consumption in nearby areas, where the weights are the bilateral distance between households.

Unfortunately, to construct such a spatial lag at the household level, we need the geocoor-

dinates of each household. Such information are not available. Instead, we adopt an alternate

approach where we calculate a district-level spatial lag of the dependent variable. That is, for

each household in our sample, we calculate the weighted average district-level consumption per

capita in all other districts. The weights are the bilateral distance between a household’s district of

residence and all other districts. We then add this district-level spatial lag as an explanatory vari-

15We use the STATA .ado file reg2hdfespatial created by Thiemo Fetzer and used in Fetzer (2014) to implement
this.
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able to our baseline specification (6). We report the results from estimating this new specification

in column (2) of Table 5. As these estimates demonstrate, our coefficient of interest remain highly

robust. We continue to find that a higher neighbor’s rainfall shock has a negative and statistically

significant effect on a household’s consumption.

As mentioned above, our baseline specification in (6) incorporates household fixed effects.

This allows us to purge the effect of any unobserved, time-invariant household and district char-

acteristics. However, there could be unobservable, time-varying district shocks that threaten our

identification strategy. While rainfall shocks themselves are unanticipated, the timing of these

shocks can coincide with other time-varying, district-level shocks. For instance, it could be the

case that the districts in our sample that received a large neighbor’s rainfall shock also experi-

enced a negative productivity shock at the same time. Both of these shocks will lower household

consumption, which means that the latter shocks will confound the effects of a neighbor’s rainfall

shock. To account for these time-varying district shocks, we include in (6) the interaction between

a district’s share of agricultural workers in 1987 and year fixed effects respectively. These in-

teraction terms will allow us to flexibly capture these time-varying, location-specific agricultural

shocks. We report the results from this augmented regression in column (3) of Table 5. As these

results demonstrate, our coefficient of interest remains highly robust.

6 Additional Results

6.1 Mechanisms

Our results thus far suggest that a positive rainfall shock in neighboring districts will lead

to a reduction in a household’s consumption. What could explain such an effect? In section 2,

we argued that one possible mechanism is that that greater rainfall in nearby districts leads to a

positive supply shock, which in turn lowers the price of crops in regional wholesale markets. To

the extent that this regional price acts as an outside option for farmers when they negotiate with

local traders, the reduction in this regional price will pass-through to the price received by the
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farmer. In turn, this will lower the income earned by the farmer from selling his crops. Thus,

the essential elements of this mechanism is that a positive neighbor’s rainfall shock leads to (i) a

reduction in crop prices and (ii) a reduction in household agricultural income. We now explore

whether these elements are supported by our data.

To test whether a positive neighbor’s rainfall lowers crop prices, we use crop price data from

the ICRISAT Village Dynamics in South Asia Macro-Meso Database (henceforth ICRISAT). This

dataset includes information on 16 major crops in 311 districts across India for the period 1966-67

to 2011-12.16 For each district, this dataset provides farm-gate prices of crops in Indian rupees per

quintal (100 kg). For our analysis, we use annual data for the period 2004 to 2011. With these data

in hand, we examine whether greater rainfall in neighboring districts lower the price of crops in a

given district by estimating the following econometric specification:

ln (Pcdt) = αc + δ1RO
dt + δ2RN

dt + θd + θc × θt + νcdt (8)

where Pcdt is the farm-gate price for crop c in district d and year t. RO
dt and RN

dt are the rainfall shock

measures defined above while θc, θd, and θt are crop, district, and year fixed effects respectively.

Lastly, νcdt is a classical error term. If the mechanism we propose above is correct, then we would

expect δ2 to be negative. We report the results from estimating equation (8) in column (1) of

Table 6. The coefficient of the neighbor’s rainfall shock is negative and statistically significant.

This confirms that our proposed mechanism of rainfall in neighboring areas lowering household

consumption through a reduction in crop prices is a plausible one.

As discussed section 2, a reduction in crop prices due to rainfall in neighboring districts has

contrasting effects on rural household consumption. First, by lowering overall food prices, rainfall

in neighboring districts will increase household consumption. In contrast, by lowering crop prices,

rainfall in neighboring districts will lower farm income and hence household consumption. We

now examine whether this second effect is supported by our data. The IHDS data provides a

16The 16 crops are rice, wheat, sorghum, pearl millet, maize, finger millet, barley, chickpea, pigeon-pea, sugarcane,
groundnut, sesame, rape and mustard, linseed, castor, and cotton. As we use monsoon rainfall data in our baseline anal-
ysis, we restrict the ICRISAT data to crops that are primarily grown during the monsoon months of June to September.
Further, to account for outliers, we omit crop prices that are above the 95th percentile of the crop-price distribution.
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breakdown of each households income by source. We use this to examine whether own-district

rainfall and rainfall in neighboring districts affect farm income in a manner that is consistent with

our hypothesis above.

To implement this, we first choose agricultural wage income as our proxy for farm income.

This measure of income is less vulnerable to measurement error compared to more direct mea-

sures of agricultural profits.17 We then estimate a version of (6) where the dependent variable

is the natural logarithm of a household’s agricultural wage income. We report the results from

estimating this regression in column (2) of Table 6. These result suggest that a greater own rain-

fall shock raises farm wage income while a greater neighbor’s rainfall shock lowers farm wage

income. These results are both fully consistent with our hypothesis above.

The results above show that both own rainfall shocks and neighbor’s rainfall shocks affect

agricultural households in a manner that is consistent with our hypothesis. We now check whether

these shocks affect agricultural households differently than non-agricultural households. One

would expect both the positive effects of greater own rainfall shocks and the negative effects of

greater neighbor’s rainfall shocks to be larger in magnitude for agricultural households. To test

this, we define an agricultural household as one that reports agricultural income (either farm

profits or farm wages) as their primary source of income.18 We classify all other households as

being non-agricultural. We then estimate the following version of equation (6):

ln (Chdt) = α1 + βA
1 RO

dt × Ah + βNA
1 RO

dt × NAh + βA
2 RN

dt × Ah + βNA
2 RN

dt × NAh

+γ1Xhdt + θh + θt + εhdt (9)

where Ah takes the value of one if household h is an agricultural household while NAh takes the

value of one if household h is a non-agricultural household. All other variables are as described

above and εhdt is a classical error term. In equation (9) we are decomposing the effects of own

17The raw farm wage data does have significant outliers. To ensure that our results are not driven by these outliers,
we omit from our sample households that report farm wages that is equal to or above the 95th percentile.

18More precisely, agricultural households are ones who report that their principal income is from either cultivation,
allied agriculture, or agricultural wages. Thus, these households include both cultivators and agricultural laborers.
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rainfall and neighbor’s rainfall into an effect that is agricultural-household specific and one that is

non-agricultural-household specific. If our proposed mechanism is correct, then we should expect

β̂A
1 > β̂NA

1 and β̂A
2 < β̂NA

2 .

We report the results from estimating equation (9) in column (3) of Table 6. These results

confirm that the positive effects of greater own rainfall shocks and the negative effects of greater

neighbor’s rainfall shocks are larger in magnitude for agricultural households. Thus, taken to-

gether, the results in Table 6 are fully consistent with our hypothesis that greater rainfall in neigh-

boring districts can lower household consumption through a reduction in crop prices and a reduc-

tion in agricultural income.

6.2 Alternate Channels

In this section we examine alternate channels through which a neighbor’s rainfall shock can

affect rural household consumption. The mechanism we proposed in section 2 was one where

neighbor’s rainfall shocks affected rural households through its effect on agricultural income. If

these shocks also affect these households through non-agricultural channels, then it would sug-

gest that our discussion in section 2 was incomplete. We begin by examining the effect of these

shocks on income and wages from non-agricultural sources. This is motivated by an existing liter-

ature that shows that own-district weather fluctuations in rural areas can lead to a reallocation of

economic activity from agriculture to non-agriculture (Emerick, 2016; Santangelo, 2016; Colmer,

2017). We now examine whether a similar effect exists for neighbor’s rainfall shocks. To do so, we

first estimate a version of equation (6) where we change the dependent variable to salary income

from non-farm sources. These results are reported in column (1) of Table 7. They suggest that

both the effect of own rainfall shocks and neighbor’s rainfall shocks are statistically insignificant.

In column (2) we repeat the analysis above, but use a household’s non-farm wage income as the

dependent variable.19 As in column (1), we find that both the effect of own rainfall shocks and

neighbor’s rainfall shocks are statistically insignificant.

19The income data we use are as constructed by IHDS. They decomposed non-farm income into income from house-
hold members who received monthly salaries and income from household members who received daily wages. We
define the former as non-farm salary while we treat the latter as non-far wages.
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Next, we examine whether own and neighbor’s rainfall shocks lead to out migration from

the rural households in our sample. While the survey data we use do not measure temporary

migration in both IHDS rounds, it does include each household’s income from remittances. This

allows us to use remittance values as proxies for the rate of out migration from a household. These

results are reported in column (3) of Table 7 where the dependent variable is now the natural

logarithm of each household’s remittance earnings per capita. As with columns (1) and (2), we

find that both the effect of own rainfall shocks and neighbor’s rainfall shocks on a household’s

remittance earnings are statistically insignificant. Together, the results in Table 7 suggest that the

household-consumption effects we’ve document thus far are not being driven by changes in non-

agricultural industries or due to out migration.

6.3 Results by Expenditure Type

Up to this point, our default measure of household welfare has been total consumption per

capita. We now examine the effect of own-district rainfall shocks as well as neighbor’s rainfall

shocks on various types of consumption expenditure. Our motivation for doing this is to examine

the impact of these rainfall shocks on particularly important types of expenditure such as food as

well as on types of expenditure such as schooling and medical that are likely to have long-term

consequences. We begin in columns (1) and (2) of Table 8 by decomposing total household con-

sumption in to food consumption and non-food consumption. In column (1), we use the natural

logarithm of a household’s total food expenditure per capita as the dependent variable. The coef-

ficient of own-district rainfall shock is positive and statistically significant while the coefficient of

neighbor’s rainfall shock is negative and statistically significant.

In column (2) we use the natural logarithm of a household’s total non-food expenditure per

capita as the dependent variable. Non-food items include rent, expenditure on electricity, tele-

phone, entertainment and other miscellaneous items. Thus, compared to food, these items are

comparatively durable in nature. The coefficients in column (2) suggest that both an own-district

rainfall shock and a neighbor’s rainfall shock has a statistically insignificant effect on rural house-
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hold consumption. Taken together, the results in columns (1) and (2) of Table 8 indicate that

households respond to a neighbor’s rainfall shock by primarily lowering expenditure on food

items and not by lowering expenditure on the relatively more durable, non-food items.

Next, we examine the impact of own and neighbor’s rainfall shocks on components of con-

sumption that may have long-term consequences. More precisely, in column (3) of Table 8 we

use the natural logarithm of a household’s total schooling expenditure over the previous 365 days

as the dependent variable. This is the only recall period for which these data are available. The

impact of rainfall on schooling is both theoretically ambiguous and empirically contested.20 Our

results in column (3) suggest that both own-district rainfall shocks and neighbor’s rainfall shocks

have statistically insignificant effects on a household’s expenditure on schooling.

Finally, in column (4) of Table 8 we explore the impact of rainfall shocks on a household’s

medical expenses. This is an alternate channel through which these shocks may have adverse

long-term consequences. The dependent variables here is the natural logarithm of a household’s

total medical expenditure over the previous 365 days. The results in this column suggest that both

a positive own-district rainfall shock and a positive neighbor’s rainfall shock have statistically

insignificant effects on a household’s medical expenditure. Thus, the results in Table 8 indicate that

the rural households in our sample respond to a neighbor’s rainfall shock by primarily reducing

food expenditure. We find no such effect on durable, non-food expenditure as well as on schooling

and medical expenditures. These results are consistent with the idea that a neighbor’s rainfall

shocks mainly represent an adverse shock to a household’s transitory income.

6.4 Alternate Rainfall and Consumption Measures

We next examine whether our main findings are robust to using alternate measures of rainfall

and consumption. We report the results from this exercise in Table 9. In column (1), we follow Jay-

achandran (2006) and construct categorical measures of rainfall shocks. More precisely, for each

district we create an own positive shock variable that takes the value of one if a district’s annual

20See the discussion in Shah and Steinberg (2017) for further details on this literature.
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monsoon rainfall is above the 80th percentile of that district’s monsoon rainfall over the period

1979 to 2015. Recall that this is the entire period for which we have rainfall data. Similarly, for

each district, we construct a neighbor’s positive shock measure that takes the value of one if a

district’s annual neighbor’s monsoon rainfall is above the 80th percentile of that district’s neigh-

bors rainfall over the period 1979 to 2015. In contrast to our default measure, these categorical

measures do not use the full rainfall data and instead focus on extreme positive shocks (i.e. above

the 80th percentile). Thus, we do not treat these categorical measures symmetrically to our default

baseline. Nonetheless, it is useful to check whether our core results are robust to this alternative

way of capturing rainfall shocks. Indeed, the results in column (1) of Table 9 show that house-

holds in districts that received greater than 80th percentile own rainfall experience an increase

in consumption. These results also show that households in districts that received greater than

80th percentile neighbor’s rainfall experience a decrease in consumption. Both of these results are

consistent with our baseline findings in Table 4.

In constructing our baseline sample, we used rainfall data from the ERA-Interim Reanaly-

sis Archive. These re-analysis data combine ground-station and satellite data with results from

global climate change models to create a consistent measure of rainfall across time and space. In

contrast, alternate sources such as the University of Delaware’s (UDEL) terrestrial precipitation

data tends to rely more heavily on ground station data. This has the disadvantage that ground

stations, especially in developing countries, are not uniformly distributed across space. Further,

as Colmer (2016) points out, the quality of ground stations in India has deteriorated over time.

Nonetheless, for the sake of completeness, we examine the robustness of our findings to the use of

the alternate UDEL data. We report the results from this robustness check in column (2) of Table

9. As the results demonstrate, the coefficient of the neighbor’s rainfall shock remains negative

and statistically significant. While the own-rainfall effect is not robust, these alternate data yield a

neighbor’s rainfall shock effect that is fully consistent with our baseline findings.

We next turn to whether our results are robust to our choice of dependent variable. Recall that

our default dependent variable is the natural logarithm of a household’s consumption per capita.

We used this variable as provided by IHDS without excluding outliers. To examine whether our
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core results are driven by such outliers, we Winsorize the consumption data at the 1 percent and

99 percent levels. The results in column (3) of Table 9 suggest that these potential outliers do not

drive our results. Even after Winsorizing the consumption data, our coefficient of interest remains

highly robust with magnitudes that are similar to the baseline results in Table 4.

Finally, in column (4) of Table 9, we consider the effect of rainfall shocks on total household

consumption rather than on consumption per capita. That is, we multiply our default measure of

consumption per capita with a household’s size to obtain each household’s total consumption. We

do so to account for the fact that our default consumption per capita measure captures both the

effect of rainfall on consumption as well as its effect on household size. In Table 7, we showed the

rainfall shocks do not have any effect on a household’s remittance income. Thus, we do not believe

that the effect of rainfall shocks on household size due to migration is a meaningful confounding

effect. To verify this, we use as the dependent variable the natural logarithm of a household’s

total consumption in column (4) of Table 9. As the results confirm, the effect of both own and

neighbor’s rainfall shocks are very similar to the baseline.

7 Conclusion

In this paper, we showed that greater rainfall can create both winners and losers. Central

to this novel conclusion is our focus on estimating the effect of both own-district rainfall and

rainfall in neighboring districts on rural household consumption. This is contrast to the typical

approach in the literature that only examines the effect of an own-region rainfall shocks. This

literature concludes that greater rainfall either has no effect on agricultural output (Dell, Jones,

and Olken, 2012) or that it actually increases agricultural profits (Deschênes and Greenstone, 2007)

and economic growth (Barrios, Bertinelli, and Strobl, 2010).

In contrast, we focus on the spatial spillover effect of rainfall. This is motivated by the obser-

vation that rainfall patches tend to span multiple districts. This means that if a district receives

greater rainfall then it is likely that neighboring districts will also receive greater rainfall. To ex-

amine the implication of this, we first described a conceptual framework where a farmer receives
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greater yield due to greater rainfall in his own district. However, greater rainfall in neighbor-

ing districts results in a positive supply shock that drives down the regional price of agricultural

crops. This reduction in price can create both welfare gains and losses for a farming household.

As consumers, such a household gains from the lower prices. As producers, however, the lower

prices result in lower farm income. Thus, when we consider both own-district rainfall as well as

neighboring-district’s rainfall, the overall effect of rainfall on household welfare is theoretically

ambiguous. The adverse effect of neighbor’s rainfall will generally attenuate the positive effect of

own-district rainfall and in some cases may even dominate it.

To explore this spillover effect empirically, we used household-level, panel data from India

along with high-resolution meteorological data to examine whether rural household consumption

depends on rainfall shocks in its own district as well as rainfall shocks in neighboring districts.

Our identification strategy incorporated household fixed effects, which allowed us to purge the

effect of any unobserved, time-invariant household and district characteristics. Thus, our results

were identified from within-district variation in own rainfall and neighbor’s rainfall from its long-

term average. Conditional on including household fixed effects, these deviations are orthogonal

to unobserved determinants of rural household consumption and allow us to identify the causal

effects of rainfall shocks.

Our results indicated that both own-district rainfall shocks and neighbor’s rainfall shocks

have a statistically and economically significant effect on rural household consumption. Fur-

ther, they suggested that neighbor’s rainfall shocks, on their own, lowered rural household con-

sumption and therefore significantly attenuated the benefit of own-district rainfall shocks. For

instance, if we ignored the spatial spillover effect of neighbor’s rainfall shocks, we found that

a one-standard deviation increase in a district’s own rainfall shock raised household consump-

tion by 7.72 percent. However, after accounting for this spatial spillover effect, we found a one-

standard deviation increase in a district’s own rainfall shock raised household consumption by

just 2.54 percent.

These results support the view that one must account for spatial spillover effects to correctly

estimate the welfare effects of own-district rainfall shocks. They also suggest that the findings
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of the previous literature that greater rainfall has either benign or positive effects on agricultural

outcomes should be interpreted with caution. Instead, we showed that depending on how much

rainfall fell in neighboring districts, greater rainfall can make rural households better off or worse

off. While this novel result adds important nuance to our understanding of the effects of rainfall

shocks, the lack of appropriate data meant that we were unable to examine the mitigation strate-

gies adopted by the households in our sample. For instance, we did not examine whether house-

holds adjust their production choices during periods of positive or negative neighbor’s rainfall

shocks and whether these households adjusted their non-monsoon crops due to these monsoon-

season neighbor’s rainfall shocks. Exploring these mitigation strategies is a fruitful avenue for

future research.
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Table 1: Descriptive Statistics of IHDS Households

(1)

Household Consumption per Capita 876.096
[958.283]

Indicator for Households in Poverty 0.204
[0.403]

Main Income Source is Agriculture 0.552
[0.497]

Number of Household Members 5.475
[2.868]

Number of Children 1.748
[1.698]

Male Household Head 0.885
[0.319]

Household Head’s Age 48.950
[13.715]

Notes: this table reports average values for various house-
hold indicators. These averages were taken over both survey
rounds. We report the standard deviation for each variable
in the square brackets. Household consumption per capita is
calculated using monthly household expenditure while the
poverty indicator is as provided by the IHDS and is calcu-
lated using the Indian Planning Commission poverty line.
Household consumption per capita is reported in constant
2005 Indian rupees. 1 U.S. dollar was approximately equal
to 43.5 Indian rupees in 2005.
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Table 2: Agricultural Production and Market Access in the
2004–2005 IHDS Sample

(1)

Panel A: Household’s Agricultural Production

Fraction of Households that are Sharecroppers 0.030
[0.172]

Fraction of Households that Sell Crops 0.598
[0.490]

Share of Output Sold 0.344
[0.363]

Panel B: Village’s Access to Markets

Indicator for Road-Accessible Villages 0.943
[0.232]

Distance to Retail Market 6.368
[6.881]

Distance to Nearest Town 14.261
[11.226]

Notes: this table reports summary statistics for various household
production characteristics and village-level access to markets indica-
tors from the 2004–2005 IHDS sample. Panel A reports the sample
averages and standard deviation in brackets for various household
agricultural production characteristics while Panel B reports the sam-
ple averages and standard deviation in brackets for various aspects
of a village’s access to markets. Note that the numbers in Panel B are
calculated at the village level. All distances reported in the table are
in kilometers.
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Table 3: Rainfall Summary Statistics

(1)

Total Rainfall 0.124
[0.086]

Own Rainfall Shock 0.058
[0.914]

Neighbor’s Rainfall Shock 0.106
[0.574]

Own Positive Shock 0.235
[0.424]

Neighbor’s Positive Shock 0.245
[0.218]

Notes: this table reports the sample averages for various
rainfall and rainfall shock measures along with its stan-
dard deviation in brackets. Total rainfall is reported in me-
ters. Own rainfall shocks and neighbor’s rainfall shocks
are calculated using the anomaly approach described in
the text. In contrast, own positive shock takes the value
of one if a district’s monsoon rainfall was above the 80th
percentile for that district during 1979 to 2015. Similarly,
neighbor’s positive shock takes the value of one if a dis-
trict’s neighbor’s rainfall was above the 80th percentile for
that district during 1979 to 2015.
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Table 4: Spillover Effects of Rainfall on Household Consumption

(1) (2) (3) (4)
Dependent variable Ln(Consumption Per Capita)

Own Rainfall Shock 0.127*** 0.073*** 0.085*** 0.048*
(0.029) (0.024) (0.024) (0.026)

Neighbor’s Rainfall Shock -1.148*** -0.424*** -0.374*** -0.096
(0.130) (0.159) (0.140) (0.139)

Own Rainfall Shock Squared 0.023**
(0.011)

Neighbor’s Rainfall Shock Squared -0.218***
(0.058)

Constant 6.056*** 6.937*** 6.370*** 6.493***
(0.068) (0.726) (0.066) (0.065)

Time-Invariant Controls No Yes – –
Household Fixed Effects No No Yes Yes
Observations 54,519 52,657 54,541 54,541
R-squared 0.216 0.293 0.247 0.250

Notes: the dependent variable in all columns is a household’s monthly per capita con-
sumption expenditure in rural India. The construction of the own rainfall shock and
neighbor’s rainfall shock variables are described in the text. All regressions control for the
number of children in a household, the household head’s age, age squared, and whether
the household head is male. In column (2), we control for a household’s religion, caste,
its district’s latitude, longitude, total population in 1987, share of agricultural workers in
1987, the share of literate individuals in 1987, and state fixed effects. These additional con-
trols are all time invariant and are absorbed by the household fixed effects in columns (3)
and (4). All regressions include year fixed effects. All regressions also incorporate sam-
pling weights to ensure that our sample reflects the population. Robust standard errors in
parenthesis are clustered at the district-year level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Econometric Issues

(1) (2) (3)
Dependent variable Ln(Consumption Per Capita)

Own Rainfall Shock 0.085*** 0.073*** 0.070***
(0.025) (0.023) (0.025)

Neighbor’s Rainfall Shock -0.374** -0.293** -0.310**
(0.164) (0.128) (0.142)

Constant 6.370*** -6.252*** 6.383***
(0.066) (2.214) (0.067)

District Spatial Lag Included No Yes No
Additional District Controls No No Yes
Observations 54,541 54,541 52,666
R-squared 0.247 0.256 0.249

Notes: the dependent variable in all columns is a household’s
monthly per capita consumption expenditure in rural India. The
construction of the own rainfall shock and neighbor’s rainfall shock
variables are described in the text. In column (1) we report Conley
(1999) spatial correlation-adjusted standard errors. In column (2) we
include a district-level spatial lag of average household consumption
per capita. Finally, in column (3) we include the interaction between
a district’s share of agricultural employment in 1987 and year fixed
effects. All regressions control for the number of children in a house-
hold, the household head’s age, age squared, and whether the house-
hold head is male, household fixed effects, and year fixed effects.
All regressions also incorporate sampling weights to ensure that our
sample reflects the population. The standard errors in parenthesis in
columns (2) and (3) are robust and clustered at the district-year level.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Alternate Channels

(1) (2) (3)
Ln(Non-Farm Ln(Non-Farm Ln(Remitt

Dependent variable Salary) Wage) ances)

Own Rainfall Shock -0.072 0.013 0.092
(0.061) (0.086) (0.155)

Neighbor’s Rainfall Shock 0.401 0.019 -1.508
(0.380) (0.333) (0.976)

Constant 7.682*** 8.706*** 5.765***
(0.693) (0.182) (0.769)

Observations 8,234 17,074 4,145
R-squared 0.126 0.076 0.334

Notes: the dependent variable in column (1) is the natural logarithm of a house-
hold’s total non-farm salary income per capita. The dependent variable in column
(2) is the natural logarithm of a household’s non-farm wages per capita. Lastly,
the dependent variable in column (3) is a household’s total remittance earnings
per capita. The construction of the own rainfall shock and neighbor’s rainfall
shock variables are described in the text. All regressions control for the number of
children in a household, the household head’s age, age squared, and whether the
household head is male. All regressions include household fixed effects and year
fixed effects. All regressions also incorporate sampling weights to ensure that our
sample reflects the population. Robust standard errors in parenthesis are clustered
at the district-year level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Spillover Effects of Rainfall – By Expenditure Type

(1) (2) (3) (4)

Dependent variable
Ln(Expenditure Per Capita on)

Food Non-Food Schooling Medical

Own Rainfall Shock 0.064*** 0.033 -0.020 0.085
(0.021) (0.039) (0.042) (0.058)

Neighbor’s Rainfall Shock -0.226* 0.027 -0.359 0.191
(0.129) (0.185) (0.233) (0.309)

Constant 5.860*** 4.526*** 1.470*** 4.816***
(0.060) (0.096) (0.179) (0.188)

Observations 54,519 54,313 33,453 41,077
R-squared 0.127 0.328 0.245 0.055

Notes: the dependent variable in column (1) is the natural logarithm of household
expenditure per capita on food items. Similarly, the dependent variables in column
(2) to (4) are the the natural logarithm of household expenditure per capita on non-
food items, schooling, and medical purposes respectively. All regressions controls
for the number of children in a household, the household head’s age, age squared,
and whether the household head is male. All regressions also include household
fixed effects and year fixed effects and incorporate sampling weights to ensure
that our sample reflects the population. Robust standard errors in parenthesis are
clustered at the district-year level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Robustness Checks

(1) (2) (3) (4)
Winsorized

Dependent variable Ln(Cons. Per Capita) Ln(Cons. PC) Ln(Cons.)

Own Positive Shock 0.135***
(0.031)

Neighbor’s Positive Shock -0.748***
(0.217)

Own Rainfall Shock - UDEL -0.003
(0.021)

Neighbor’s Rainfall Shock - UDEL -0.153**
(0.071)

Own Rainfall Shock 0.084*** 0.082***
(0.023) (0.023)

Neighbor’s Rainfall Shock -0.368*** -0.365***
(0.135) (0.123)

Observations 54,541 52,137 54,541 54,541
R-squared 0.249 0.252 0.251 0.122

Notes: the dependent variable in columns (1) and (2) is a household’s monthly per capita con-
sumption expenditure in rural India. In column (3), the dependent variable is the natural loga-
rithm of a household’s monthly per capita consumption expenditure that has been Winsorized at
the 1 percent and 99 percent levels. Lastly, in column (4), the dependent variable is a household’s
total monthly consumption. The construction of the own rainfall shock and neighbor’s rainfall
shock variables are described in the text. Own positive shock is a binary variable that takes the
value of one if a district received a own rainfall shock above the 80th percentile. Similarly, neigh-
bor’s positive shock is a binary variable that takes the value of one if a district received a neighbor’s
rainfall shock above the 80th percentile. Own rainfall shock - UDEL and neighbor’s rainfall shock
- UDEL are our baseline shock measures constructed using the University of Delaware’s rainfall
data. All regressions control for the number of children in a household, the household head’s
age, age squared, and whether the household head is male, household fixed effects, year fixed
effects, and a constant that is not reported. All regressions also incorporate sampling weights to
ensure that our sample reflects the population. The standard errors in parenthesis in all columns
are robust and clustered at the district-year level. *** p<0.01, ** p<0.05, * p<0.1.
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