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Abstract

This paper examines how farmers adapt in the short-run to extreme heat. Using a production
function approach and micro-data from Peruvian households, we find that high temperatures
induce farmers to increase the use of inputs, such as land and domestic labor. This reaction
partially attenuates the negative effects of high temperatures on output. We interpret this
change in inputs as an adaptive response in a context of subsistence farming, incomplete markets,
and lack of other coping mechanisms. We use our estimates to simulate alternative climate

change scenarios and show that accounting for adaptive responses is quantitatively important.
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1 Introduction

A growing body of evidence suggests that extreme temperatures have negative effects on crop
yields.! Based on these findings, current estimates suggest that climate change will bring dramatic
shifts in agriculture: a global warming of 2°C, as in conservative predictions, would reduce agricul-
tural output by almost 25% (IPCC, 2014). Among those exposed to this shock, the rural poor in
developing countries are probably most vulnerable. They are located in tropical areas, where the
changes in climate will occur faster and be more intense, and their livelihoods are more dependent
on agriculture.

Given these potentially disruptive effects, it is extremely important to understand possible
adaptation strategies and the scope for mitigation. Some studies suggest that a possible response
to climate change would be re-allocation of economic activity, in the form of migration, changes
in trade patterns or sectoral employment (Colmer, 2016, Costinot et al., 2016, Feng et al., 2012).
Other studies, based on farmers’ self-stated adaptive strategies, emphasize changes in consumption
and savings as potential temporary responses (Akpalu et al., 2015, Di Falco et al., 2011, Gbetibouo,
2009, Hisali et al., 2011).

Less is know, however, about productive adaptations, i.e., changes in production decisions
to attenuate the negative effects of extreme temperatures. Existing studies from the U.S. and
India find that farmers do not seem to change crop mix or agricultural practices in response to
rising temperatures, even though crop yields are negatively affected by both short-term weather
shocks and long-term changes in climate patterns (Burke and Emerick, 2016, Guiteras et al., 2015).
This finding has been interpreted as evidence that farmers do not engage in long-run productive
adaptation.

This paper examines how farmers adapt to extreme heat in the context of a developing country.
Our main contribution is to show that an important adaptive response is to increase the use of
farm inputs, such as land and domestic labor. This response to a negative productivity shock, can
be rationalized in a context of traditional subsistence farming characterized by thin input markets
and limited outside opportunities. To the best of our knowledge, this margin of adjustment to
extreme temperatures has not been documented before. It has, however, relevant implications for
the quantification of predicted economic losses due to climate change, and for understanding the
potential long-term effects of weather shocks.

To separate the effects of temperature on agricultural productivity, output, and productive deci-
sions, we use a production function approach combined with a novel dataset. We match micro-data
from Peruvian farming households for 2007-2015 with high-frequency temperature data obtained
from satellite imagery. The granularity of our data allows us to estimate the relationship between

temperature and agricultural outcomes —such as total factor productivity (TFP), yields, output

!See for instance, Burke et al. (2015), Carleton and Hsiang (2016), Chen et al. (2016), Deschenes and Greenstone
(2007), Lobell et al. (2011), Schlenker et al. (2005, 2006), Zhang et al. (2017a).



and input use— using observations at the farm level.?

Our approach has several advantages over existing studies examining the effect of temperature
on agriculture using crop yields. First, crop yields capture both biological and human responses,
such as changes in labor and other inputs. However, by construction, they cannot reflect changes
in land use, missing a potentially important margin of adjustment. Second, most of the existing
evidence comes from farmers in the U.S. These farmers engage in mostly intensive, monocropping
agriculture and have access to ex-ante risk coping mechanisms, such as crop insurance. These
features may reduce incentives to adapt to climate change (Annan and Schlenker, 2015). Hence,
their responses may not be informative of farmers’ adaptation in other contexts. Finally, household
and satellite data like the ones used in this paper are publicly available for most developing countries.
Thus, our analysis can be replicated in contexts that lack rich weather station data.

We find that farmers respond to extreme temperature by increasing use of land and domestic
labor. This occurs despite extreme temperatures reducing agricultural productivity. The magnitude
is economically significant and partially offsets the drop in total output. This result is robust to a
variety of specification checks and is not driven by changes in agricultural prices.

This is a surprising finding: in standard production models lower productivity would weakly
reduce input use. However, it is consistent with decisions of consumer-producers facing incomplete
markets as in agricultural household models (De Janvry et al., 1991, Taylor and Adelman, 2003).
In this view, subsistence farmers, lacking other consumption smoothing mechanisms, may use their
inputs more intensively to attenuate drops in output and consumption. With this framework in
mind, we interpret our results as evidence of productive adaptation, i.e., changes in production
decisions to reduce the negative effects of extreme temperature.

We then exploit the richness of our data to examine other possible adaptive responses. First,
we document changes in crop mix associated with extreme temperatures: we find a reduction
in cereals (such as rice and corn) and an increase in tubers. This response, however, occurs in
addition to changes in land use, and is not enough to offset the drop in productivity. Second, we
examine several ex-post coping mechanisms previously identified in the literature on consumption
smoothing, such as migration, off-farm labor, and disposal of livestock (Bandara et al., 2015, Beegle
et al., 2006, Kochar, 1999, Munshi, 2003, Rosenzweig and Wolpin, 1993, Rosenzweig and Stark,
1989). Consistent with previous studies, we find that households reduce their holdings of livestock
after a negative weather shock, although the evidence is less conclusive regarding other coping
mechanisms. Interestingly, the increase in land as a response to extreme heat only occurs among
farmers who do not have livestock, even though cattle owners do seem to have available land. This
result suggests, by a revealed preferences argument, that adjusting land may be a costlier strategy
than selling disposable assets.

Our findings have important implications for the quantification of the potential economic costs

2A similar approach has been used for manufacturing plants in China in Zhang et al. (2017b).



of climate change, especially for developing countries. Most current predictions rely on estimates of
the effect on crop yields from studies in developed countries or performed in controlled conditions.
These estimates fail to take into account changes in land use, and thus may overestimate the effects
of climate change on agricultural output.

To illustrate this point, we use our estimates to predict the potential effect on yields and output
of evenly distributed increments of 1.5°C to 3°C in average daily temperatures.®> We conduct this
analysis separately for the two main climatic regions of Peru, i.e., coast and highlands. We obtain
two important results. First, the effects of increased temperature are heterogeneous. The coast,
with an arid semi-tropical climate, would suffer large losses (between 8-19% of total output). In
contrast, the highlands, with a cooler and wetter climate, would benefit slightly from the warmer
temperatures. Similar heterogeneous effects have been document for U.S. agriculture (Deschenes
and Greenstone, 2007, Mendelsohn et al., 1994, Schlenker et al., 2006) but not for a developing
country. Second, accounting for farmer adaptation is relevant to quantify output losses. In the case
of the coast, failing to account for adaptive behavior would overestimate the estimated losses by
almost 15%.

The rest of this paper is organized as follows. Section 2 discusses our analytical framework
and empirical strategy. Section 3 presents the main results on productive adaptation and other
coping mechanisms, while Section 4 explores in more detail changes in land use. Section 5 presents
simulations of climate change scenarios. Section 6 presents a variety of robustness checks. Section

7 concludes.

2 Methods

2.1 Analytical framework

This section describes a simple framework to analyze farmers’ adaptation to changes in temperature.
We focus on short-run productive adaptation, that is, changes in production choices (such as input
use) as a strategy to attenuate the negative effects of weather shocks.

We start by considering a producer-consumer model in which agricultural output is defined by
production function Y = f(A, T, L), where A is total factor productivity (TFP), T is land and L
is labor. In this framework, a natural way to analyze temperature is through its effects on TFP.
This effect is likely non-linear. Existing studies, in both the biological and economic literature, find
that at moderate levels increases in temperature are beneficial for crop yields. However, at higher
levels, temperature can be harmful.

How would farmers respond to this shock? In a standard production model, with well-functioning

3These increments are consistent with scenarios RCP2.6 and RCP8.5 of the 4th IPCC Assessment Report. See,
for example, IMF (2017).

“See Schlenker and Roberts (2009), Burke and Emerick (2016), Auffhammer et al. (2012), Hsiang (2010), Hsiang
(2016), among others.



markets, we could expect that producers adjust to lower productivity by reducing input use. This
reduction in input use would exacerbate the drop in TFP, and lead to a larger drop in agricultural
output.

These predictions, however, could be different in a context with incomplete markets. In this
case, we cannot longer separate consumption and production decisions, as discussed in Benjamin
(1992). Consider, for example, a scenario in which some inputs cannot be traded and households’
consumption is close to subsistence levels. This scenario is similar to the environment used in
standard agricultural household models (De Janvry et al., 1991, Taylor and Adelman, 2003). In
this case, a negative productivity shock, and the subsequent drop in agricultural output, could
push household consumption below subsistence levels. In the absence of other coping mechanisms
(such as crop insurance, savings, or access to credit) or limited off-farm opportunities (such as
migration or non-agricultural jobs), the only way to attenuate the drop in output, and avoid an
undesirable reduction in consumption, would be to increase the use of non-traded inputs, such as
land or domestic labor. This has been documented recently in a report by Damania (2017). The
authors show how, as a response to shortfall in precipitation of one standard deviation, farmers
from Madagascar expand their productive units into forests, increasing the rate of deforestation by
10% to 20%.

The argument laid out above focuses on a particular type of productive adaptation, i.e., changes
in input use. There are, however, other possible adaptive responses. For instance, recent work on
climate change and adaptation has stressed changes in crop mix as a possible response (Burke and
Emerick, 2016, Costinot et al., 2016). Similarly, an influential literature highlights how households
can smooth consumption by migrating, increasing off-farm work, or selling cattle, among other
strategies (see for instance Rosenzweig and Wolpin (1993) or Kochar (1999)).

With this framework in mind, our empirical analysis examines the effect of extreme heat on
TFP, input use, and agricultural output. We also examine potential heterogeneous responses, as
those with availability of alternative coping strategies may be more likely to use them instead of
changes in input use. Finally, we also examine other productive adaptations, such as changes in

crop mix, and consumption smoothing mechanisms.

2.2 Data

Our empirical analysis focuses on two climatic regions of Peru: the coast and the highlands (see
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Figure 1 for a location map).® The two regions exhibit a rich variety of climatic, socioeconomic

®These features are certainly present in the Peruvian case: more than 50% of households are poor, only around
10% of farmers rent land, and family members work mostly on the household farm (see Table 1).

5Peru has three main climatic regions: the coast to the west, the Andean highlands, and the Amazon jungle to the
east. The coast is the region from 0 to 500 meters above sea level (masl) on the west range of the Andes. Highlands
range from 500 to almost 7,000 masl, while the jungle is the region of low lands (below 1000 masl) to the east of
the Andes. We drop the jungle due to small sample size and poor quality of satellite data: many observations are
missing due to cloud coverage.



and agronomic characteristics. Similar to other developing countries, modern farming (usually
capital intensive and export-oriented) co-exists with small-scale, subsistence, farmers. This latter
group encompasses most rural households but has been neglected in previous studies on the effect
of temperature on agriculture. We argue that these features make the Peruvian case an ideal
testing ground of the effect of extreme heat on agriculture. By providing a snapshot of the effects
on different climates and subsistence farmers, it can be informative of potential effects in other
developing countries.

We combine household surveys with satellite imagery to construct a comprehensive dataset
with information on agricultural, socio-demographic, and weather variables at the farm level. The
dataset includes around 55,000 households and spans from 2007 to 2015.7

Figure 1: ENAHO observations 2007-2015

Legend

ENAHO observations
* Coast
Highlands
Elevation (in m)

Notes: Location of the ENAHO observations used in this study by climatic region.

"We restrict the sample to households with some agricultural activity in each survey year. We drop 282 farmers
reporting land holdings larger than 100 hectares. We also drop observations from the jungle due to small sample size
and poor quality of satellite data due to cloud cover.



Temperature and precipitation A main limitation in Peru, and other developing countries,
is the lack of high resolution weather data: in the period of analysis there were just 14 stations
in the whole country. This lack of data also introduces a significant measurement error in gridded
products, such as reanalysis datasets, which use weather station data as their main input.®

To overcome these limitations, we use satellite imagery.For temperature, we use the MOD11C1
product provided by NASA. This product is constructed using readings taken by the MODIS tool
aboard the Terra satellite. These readings are processed to obtain daily measures of daytime
temperature on a grid of 0.05 x 0.05 degrees, equivalent to 5.6 km squares at the Equator, and is
already cleaned of low quality readings and processed for consistency.’

The satellite data provides estimates of land surface temperature (LST) not of surface air
temperature, which is the variable measured by monitoring stations. For that reason, the reader
should be careful when comparing the results of this paper to other studies using re-analysis data or
station readings. LST is usually higher than air temperature, and this difference tends to increase
with the roughness of the terrain. However, both indicators are highly correlated (Mutiibwa et al.,
2015).

Precipitation data comes from the Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) product (Funk et al., 2015). CHIRPS is a re-analysis gridded dataset that combines
satellite imagery with monitoring station data. It provides estimates of daily precipitation with a
resolution of 0.05 x 0.05 degrees.

We combine the weather data with household’s location to obtain daily measures of tempera-
ture and precipitation for each farmer during the last completed growing season.'® Follwing the
Peruvian agricultural calendar, we define the growing season to span from October through March.
This period corresponds to the southern hemisphere’s Spring and Summer. The distribution of

temperatures in the relevant locations over the growing season are shown in Figure 2.

Agricultural and socio-demographic data We use repeated cross sections of the Peruvian
Living Standards Survey (ENAHO), an annual household survey collected by the National Statistics
Office (INEI). This survey is collected in a continuous, rolling, basis. This guarantees that the
sample is evenly distributed over the course of the calendar year. Importantly, the ENAHO includes
geographical coordinates of each primary sampling unit or survey block.!' In rural areas, this

corresponds to a village or cluster of dwellings. We use this information to link the household data

8Two commonly used examples are published by the European Center for Medium-Range Weather Forecasting
(ECMWF) and the National Center for Environmental Prediction (NCEP). These products rely on weather station
data and interpolate it on a global grid using general circulation models.

9The satellite estimates are very precise. Validation studies comparing satellite and ground readings find a
discrepancy of only 0.1-0.4°C (Coll et al., 2005, 2009, Wan and Li, 2008).

1"We assign the outcomes for growing season t (October ¢ = 1 through March t), to any household interviewed as
of April ¢t and up to March ¢t + 1. We believe this approach is conservative since it only assigns weather outcomes to
households once the growing seasons has finished.

"There are more than 3,400 unique coordinate points.



Figure 2: Distribution of daily average temperature

Average % of days in the growing season
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Temperature (in Q)

Notes: Figure depicts the share of days spent in each temperature bin by the farmers in our sample, during
the 2007-2015 growing seasons. The 36°C threshold indicates the temperature beyond which additional
heat becomes detrimental for agricultural yields (see Figure 3).

to satellite imagery. Figure 1 depicts the location of the observations used in this study.

The ENAHO contains rich information on agricultural activities in the 12 months prior to the
interview. We use this information to obtain measures of agricultural output and input use. To
measure real agricultural output, we construct a Laspeyres index with quantity produced of each
crop and local prices.'? Land use is obtained by adding the size of parcels dedicated to seasonal
and permanent crops. We observe the size and use of each parcel, but not which specific crops are
cultivated in each one. Since most farmers cultivate several crops, this prevents us from calculating
crop-specific yields.

We use self-reported wage bill paid to external workers as a measure of hired labor use. Labor
information on household members is available for the week prior to the interview.'> Use this

information we calculate the number of household members working in agriculture and build an

12 A5 weights, we use the median price of each crop in a given department in 2007.

13Given that interviews can occur after the growing season, these measures of domestic labor may not reflect actual
input use during the period of interest. We address this concern in the analysis of input use by using only observations
interviewed during the growing season.



indicator of child labor.'* These variables serve as proxies for domestic labor.

We complement the household survey with data on soil quality from the Harmonized World Soil
Database (Fischer et al., 2008). This dataset provides information on several soil characteristics
relevant for crop production on a 9 km square grid.'®

Table 1 present some summary statistics for our sample of farming households. There are
several relevant observations for the empirical analysis. First, most farmers are poor and depend
on agriculture as their main economic activity. The incidence of poverty in our sample of farmers
is around 50%. For comparison purposes, a similar methodology shows that poverty over the whole
of Peru during the period of analysis was 21.6%. Poverty and reliance in agriculture as the primary
economic activity are higher in the highlands than in the coast. Second, farmers have small scale
operations (the average farm size is around 2 ha), and use practices akin to traditional rather
than industrial farming: they rely on domestic labor including child labor, cultivate a variety of
crops instead of monocropping, and leave some land uncultivated. This feature is consistent with
fallowing and crop rotation.

Finally, climatic conditions are drastically different in both regions in the sample. The coast has
a sub-tropical climate with mild to hot temperatures and very little rainfall. Not surprisingly, most
of the agriculture in this region occurs in irrigated lands.'® In contrast, the highlands have cooler
temperatures and more rain during the growing season. These differences do not entail substantially
different results in the key components of our analysis, but have important implications when

thinking in terms of the potential effects of greater temperatures due to climate change.

2.3 Empirical strategy

The aim of the empirical analysis is to examine how farmers adjust their production decisions as
a response to extreme heat. As discussed in Section 2.1, we adopt a producer-consumer approach
and analyze weather shocks as changes in total factor productivity, A. In this framework, extreme
heat reduces A, and through that channel, it can affect input use and agricultural output. Input
use and agricultural output can be modelled as reduced form functions of A and a set of given
parameters such as local prices and return to land fallowing. Assuming that A is a function of local

weather and other factors, such as household and district characteristics, we can approximate these

14 Child labor is defined as an indicator equal to one if a child living in the household aged 6-14 reports doing
any activity to obtain some income. This includes helping in the family farm, selling services or goods, or helping
relatives, but excludes household chores.

5The soil qualities include nutrient availability and retention, rooting conditions, oxygen availability, excess salts,
toxicity and workability.

16Given the potential importance of irrigation as a method to counteract the damage from high temperatures, a
branch of the literature decides to exclude areas with high irrigation coverage, see for instance Schlenker and Roberts
(2009). We keep these observations but control for the share of irrigated land.



reduced forms using the following log-linear regression model:

Inyje = g(v, wit) + ¢Z; + pj + Vs + €, (1)

where the unit of observation is farmer ¢ in district j during growing season ¢, and ¥ is an outcome
such as agricultural output, or quantity of input used. g¢(v,wj) is a non-linear function of local
weather conditions (wj), to be specified later. Z; is a set of household characteristics, and p; and
1y are district and year fixed effects.!'” We cluster the standard errors at district level to account
for spatial and serial correlation in the error term.'® In this baseline specification, we are interested
in ~: the reduced-form estimate of the effect of weather on agricultural outcomes.

Due to data limitations, we do not include other determinants of agricultural outcomes such as
local prices, endowments, or returns to land fallowing. However, to the extent that these variables
are captured by the set of fixed effects and household controls, potential endogeneity is less of
a concern. In addition, we verify the robustness of our results in alternative specifications by
including a richer set of covariates, such as input endowments and department-by-growing season
fixed effects. We also examine the effect of weather shocks on local prices, as a way of testing for

this possible channel of impact.

2.3.1 Estimating the effect on productivity

At the core of our analysis is the assumption that extreme heat affects total factor productivity.
We examine this assumption in two ways. First, we estimate regression (1) using as dependent
variable total output per hectare (Y/T'), a proxy for agricultural yields. This approach is similar
to previous studies in the literature which use crop yields.'”

A main limitation of this approach is that yields is a measure of partial productivity which
captures both changes in TFP and relative use of inputs. If inputs are fixed, for instance in lab
conditions, this approach is informative of effects on TFP. However, in the presence of adaptive
responses, it can overestimate the effect productivity shocks on agricultural productivity.

For that reason, we complement our results by estimating a production function. Assuming a
Cobb-Douglas production function Y;;; = AijtTﬁ‘Lg, applying logarithms, and using the functional

form assumption of A, we obtain the following regression model:

InYijs = aln Ty + BIn Ly + g(v, wit) + ¢Z; + pj + ¥y + €4, (2)

17A district is the smallest administrative jurisdiction in Peru and approximately half the size of the average U.S.
county. Our sample includes 1,320 districts out of a total of 1,854.

18Results are robust to clustering standard errors at provincial level (see Table 12). A third alternative often
discussed in the literature is to correct spatial and serial correlation using the procedure suggested by Conley (1999).
However, this approach is not feasible in our case due to conformability errors as described in Hsiang (2016).

9Due to data limitations we are unable to calculate crop-specific yields, except for a small share of farmers.
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where Y is agricultural output, and T and L are quantities of land and labor. This model is similar
to equation (1), however, by controlling for input use, v can now be interpreted as the effect of
weather on TFP.

A potential concern with this specification is that € does not simply reflect unanticipated shocks
but unobserved determinants of farmer’s productivity. Since output and input use are both affected
by productivity, this would lead to a problem of omitted variables. To address this concern,
we estimate (2) using both OLS and IV models. In the latter case, we use endowments (i.e.,
household size and area of of land owned) as instruments for input use. The motivation to use
these instrument comes from the observation that, in the absence of input markets, the quantity
used of land and domestic labor would be proportional to the household endowment.?’ The validity
of these instruments would rely on the assumption that endowments affect output only through
its effect on input use, i.e., endowments should not be conditionally correlated to unobserved

heterogeneity, eijt.m

2.3.2 Modeling the relation between weather and productivity g(v,wi:)

Following previous economic and agronomic findings, we model the relation between weather and
agricultural productivity as a function of the farm’s cumulative exposure to heat and water.??
This approach is based on the assumption of time separability, i.e., weather outcomes have the
same impact on output per hectare whenever they occur within a given growing season. Similar
to Schlenker et al. (2006), we construct two measures of cumulative exposure to heat during the
growing seasons: degree days (DD) and harmful degree days (HDD). DD measures the cumulative
exposure to temperatures between a lower bound, usually 8°C up to an upper threshold 74,
while HDD captures exposure to extreme temperature (above 7y4), The inclusion of HDD allows
for potentially different, non-linear, effects of extreme heat.
Formally, we define DD = 13", gPP(hy), with

0 if h <8
gDD(h) =qh—- Tlow if 8 <h < Thigh

Thigh — 8 if Thigh < h,

hg is the average daytime temperature in day d and n is the total number of days in a growing

20With perfect input markets, we would obtain the standard result of separability of consumption and production
decisions and there would be no correlation between endowments and input use (Benjamin, 1992). Empirically, this
would create a problem of weak instruments.

21The interpretation of this IV strategy would be as a local average treatment effect, since the coefficients would
be identified from farmers subject to input market imperfections.

22See, for example Schlenker and Roberts (2006).
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season. Similarly, HDD = 15, g#PP (), with

0 if h < Thign
gHDD<h)= g

h_Thigh if Thigh < h

After calculating total degree days, we estimate the average degree days by day over the en-
tire growing season, by dividing over the number of days with non-missing temperature data, for
consistency. This re-scaling makes interpretation easier and does not affect the results. Similarly,
we measure exposure to precipitation using the average daily precipitation (PP) during the grow-
ing season and its square.?3 With these definitions in mind, we parametrize the function relating

weather to productivity g(v,wi) as:
9(v,wit) =¥ DDit + W HDDjy + 72 PPy + v3PPj. (3)

A key remaining issue is to define the value of the upper threshold above which temperature has
a negative effect (73,4n) on agricultural yields. Previous studies in U.S. set this value between 29-
32°C (Deschenes and Greenstone, 2007, Schlenker and Roberts, 2006). These estimates, however,
are likely to be crop and context dependent and hence might not be transferable to our case.?* For
that reason, we prefer to use a data-driven approach.

To do so, we estimate a flexible version of (1) using log of output per hectare as outcome
variable and replacing DD and HDD with a vector of variables measuring the proportion of days
in a growing season on which the temperature fell in a given temperature bin.?® Based on the
distribution of temperatures in the Peruvian case, we define ten bins: < 18°C, > 41°C, and eight
3°C-wide bins in between. Our omitted category is the temperature bin 27-29°C.

Figure 3 displays the estimated coefficients and their 90% confidence interval. Note that tem-
peratures above 32°C start having a negative effect on agricultural yields. The effect becomes
statistically significant for temperature bin 36-38°C. Based on these results, in our preferred spec-
ifications we use a value of 73,45 equal to 36°C for the whole sample. In Section 6 we verify the

robustness of our main results to a threshold of 32°C, selected by an iterative regression method.

23Precipitation and temperature are likely to be correlated, so it is important to include this regressor.

24In addition to differences in crop mix and agricultural technology, we use a different measure of temperature (i.e.
land surface temperature). These factors make previous estimates not applicable to our case study.

25This specification is similar to the one used by Burgess et al. (2017) to study the effect of weather on mortality.
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Figure 3: Non-linear relationship between temperature and agricultural yields

1.5

Change in In(output per ha.)

I T T T T T T T T 1
<18 18-20 21-23 24-26 27-29 30-32 33-35 36-38 39-41 >41

Temperature bin (in Q)

Notes: Points represent coefficient estimates of the effect of increasing the share of days in the growing
season in each of the temperature bins, relative to the 27-29°C bin, on log of output per ha. Dashed lines
show the 90% confidence interval.
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Table 1: Summary statistics (ENAHO 2007-2015)

All Coast  Highlands

(1) (2) (3)
A. Household characteristics
Poor (%) 50.8 26.2 55.0
Household size 4.33 4.41 4.31
Primary education completed by HH head (%)  51.2 59.0 49.8
Child works (%) 21.5 9.5 23.6
Main job in agriculture (%) 78.4 68.6 80.0
B. Agricultural characteristics
Value of agric. output (Y), 2007 USD 1025.3 3053.0 682.0
Output per ha. (Y/T), 2007 USD 1256.4 2319.3 1077.3
Land used (T), in ha. 2.0 2.4 1.9
No. HH members work on-farm 2.3 2.2 2.3
Hire workers (%) 48.4 55.8 47.1
Uncultivated land (% of land holding) 40.1 12.1 44.8
Irrigated land (% land holding) 36.5 82.3 28.7
Tubers (% total output) 31.4 5.6 35.6
Cereals (% total output) 31.2 30.2 31.4
Legumes (% total output) 10.75  7.82 11.23
Own livestock (%) 76.8 54.6 80.6
Value of livestock, 2007 USD 678.1  450.3 716.7
C. Weather during the last growing season
Average temperature (°C) 22.9 33.1 21.2
Average DD 14.8 23.8 13.2
Average HDD 0.34 1.37 0.16
% days with HDD 10.3 35.4 6.1
Precipitation (mm/day) 3.1 0.9 3.5
Observations 54,981 7,961 47,020

Notes: Sample restricted to farming households from the coast and highlands. Cereal, tuber
and legumes are the biggest contributors to household agricultural income. Other sources include
garden crops, fruits, and forage.
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3 Results

This section presents our empirical results on farmers’ responses to extreme heat. We begin by
documenting the non-linear effect of temperature on agricultural productivity. Then we examine
productive adaptations, such as changes in input use and crop mix. Finally, we evaluate other

coping strategies identified in the consumption smoothing literature.

3.1 Temperature and agricultural productivity

Figure 3 sets the scene for our empirical analysis. It provides prima facie evidence of a non-linear
relationship between temperature and agricultural productivity: at moderate levels, temperature
increases output per ha., but at higher levels, the effect is negative.

Table 2 corroborates this finding using our preferred specification, which includes degree day
measures of cumulative exposure to temperature: DD and HDD. Column 1 uses agricultural yields
(Y/T) as a proxy for productivity. As mentioned above, this approach may not accurately measure
the impact of weather outcomes on productivity, since it confounds impacts on both TFP and
input use. For that reason, in columns 2 and 3 we estimate a production function, i.e, output
conditional on input use, using an OLS and IV strategy, where input use is instrumented with
household endowments. By controlling for input use, these latter estimates can be interpreted as
the effect of temperature on TFP.

Our estimates suggest that extreme heat has a negative effect on agricultural productivity.26
The magnitude of the effect is economically significant: the most conservative estimate suggests
that an increase of 1°C in the average growing season temperature above the optimal level would
decrease agricultural productivity by almost 16%. The standard deviation of this HDD variable
is 0.8. To put this figure in further context, note that climate change scenarios envisage that,
by the end of this century, average temperatures could increase by 1.5°C to 3°C. Assuming a
conservative flat increase of daily average temperatures, these scenarios translate into increases of
up to 1.167 average HDD over the growing season in the Peruvian highlands, as we will see in
section 5. Negative effects of extreme heat on crop-specific yields of similar magnitudes have been
documented in agronomic field trials and using aggregated data in U.S., India, and Sub Saharan
Africa, among others.?”

What happens with total output? Consistent with a drop in productivity, we find that extreme
heat reduces agricultural output (column 4). However, the magnitude of this effect is smaller
than for TFP or yields. The difference between the two coefficients is not statistically significant.

However, it is suggestive that farmers implement productive adaptations (i.e., changes in production

26The results are similar using an alternative measure of exposure to extreme heat: the share of days during the
growing season with high temperatures (above 36°C). See Table A.1 in the Appendix.

2"See, for example, Auffhammer et al. (2012), Guiteras et al. (2015), Burgess et al. (2017), Burke et al. (2015),
Burke and Emerick (2016), Schlenker and Roberts (2009), Lobell et al. (2011).
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decisions) to attenuate the negative effect of extreme heat on total output. We examine this

hypothesis in detail next.

Table 2: Impacts of DD and HDD on agricultural productivity and out-

put
Y/T TFP Y
Dep. var.: In(output/ha) In(output) In(output) In(output)
(1) (2) 3) (4)
Average DD 0.009 0.007 0.009 0.006
(0.009) (0.008) (0.008) (0.009)
Average HDD -0.192*** -0.164*** -0.181*** -0.157**
(0.070) (0.063) (0.064) (0.075)
Input controls No OLS v No
N 54,981 54,972 54,972 54,981
R2 0.241 0.405 0.390 0.244

Notes: Standard errors (in parenthesis) are clustered at the district level. Stars in-
dicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All specifications
include district and climatic region-by-growing season fixed effects, and control for
household head characteristics (age, age?, gender, and level of education); indicators
of soil quality from Fischer et al. (2008) (nutrient availability, nutrient retention, root-
ing conditions, oxygen availability, salinity, toxicity and workability) and the share of
irrigated land. Input controls: log of number of household members working in agri-
culture, total land used, and amount spent on hiring labor. Instruments for domestic
labor and land used: household size and land owned. First stage joint significance
F-test is 360.71.

3.2 Productive adaptations: input use and crop mix

Table 3 presents our main results on productive adaptation. We start by examining changes in
input use as a response to extreme heat. We focus on three key agricultural inputs: hired labor,
household labor, and land.

Consistent with lower productivity, we observe that extreme heat has a negative effect on hired

28 However, the effect on land and household labor is the opposite (columns

labor (column 1).
2-5).2% Extreme heat increases land used, quantity of household labor used in the farm (measured

both as number of individuals or number of hours), as well as the probability of child labor.3°

28Due to data limitations, we cannot say whether this effect captures lower hours hired or lower hourly wages paid.

2%Note that the dataset only provides information on labor outcomes in the week previous to the survey. To reduce
measurement error, in Columns 3 to 5 we focus only on households that were interviewed during the growing season.
This explains the smaller number of observations.

39This last result is consistent with findings in the literature on child labor (Bandara et al., 2015, Beegle et al.,
2006) that show that poor households may resort to employing children in productive activities when subject to
negative income shocks, in line with the luxury axiom proposed initially by Basu and Pham (1998).
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These are surprising results. In a standard production model, we could expect negative pro-
ductivity shocks to reduce use of variable inputs. These findings, however, are consistent with the
response of subsistence farmers in a context of incomplete markets, as discussed in Section 2.1. In
that scenario, farmers exposed to a negative shock and limited off-farm opportunities may need to
resort to a more intensive use of non-traded inputs to avoid undesirable drops in consumption.

To the best of our knowledge, this pattern of productive adaptation has not been documented
before. These results uncover an adaptive response (i.e, increase in input use) that may be specially
relevant for farmers in less developed countries. This margin of adjustment may have been missed
in existing studies of the effect of temperature on agriculture due to their focus on farmers in
developed countries. In that context, better access to markets, crop insurance and other coping
mechanism may make changes in land use a less relevant response.

This finding has two important implications. First, it suggests a dynamic link between weather
shocks and long-run outcomes. To see this, consider that unused land or household labor are not
necessarily unproductive, but might have alternative uses. For instance, leaving land uncultivated
(i.e., fallowing) is a common practice in traditional agriculture to avoid depleting soil nutrients,
recover soil biomass, and restore land productivity (Goldstein and Udry, 2008). Similarly, sending
children to school, instead of working on the farm, can increase future earnings. Thus, using these
inputs more intensively, as a response of a weather shock, could reduce these future benefits. In
this sense, this adaptive response is akin to reducing savings/investments.

Second, this adaptive response may affect estimations of the effect of climate change on agri-
cultural production. These estimates are usually based on the effect of temperature on crop yields
(Y/T). This is a correct approach if land use is fixed. In that case, changes in crop yields are
the same as changes in output. However, using crop yields may be less informative in contexts in
which farmers adapt to weather shocks by changing land use. As we show in Section 5, taking into
account this adaptive response reduces, in a non-trivial magnitude, the predicted effects on total

output.

Changes in crop mix Recent studies have emphasized the possible role of changes in crop mix
as an adaptive response to climate change (Burke and Emerick, 2016, Colmer, 2016). A relevant
question is how important is this margin of adjustment in our context.

In Table 4 we explore this issue by looking at the effect of temperature on quantities and value
shares of three main crop types: cereals (mostly rice in the Coast and corn in the Highlands), tubers
(i.e., potatoes) and legumes. These crops represent more than 70% of agricultural production and
are widely widespread. Note, however, that farmers in our context practice multicropping: the
average farmers grows almost six different crops.3! This is a commonplace practice among subsis-

tence farmers across the developing world, and is in stark contrast with the modern agricultural

3n our sample, less than 10% of farmers report growing only one crop.
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Table 3: Impacts of DD and HDD on input use

Hired Labor T Household Labor

(1) (2) (3) (4) (5)
HH members HH Hours

Dep var: Wage Bill  Land Used in farm in farm  Child Labor

Average DDs 0.017 -0.003 -0.008* -0.019*** -0.020***
(0.014) (0.005) (0.004) (0.007) (0.006)

Average HDDs -0.151% 0.035** 0.066*** 0.084** 0.045**
(0.082) (0.015) (0.022) (0.036) (0.020)

N 54,979 54,981 22,500 22,503 11,990

R2 0.222 0.313 0.261 0.257 0.308

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical signifi-
cance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications include
district and climatic region-by-growing season fixed effects, and the same controls as baseline regression
in Table 2. Columns (3) to (5) include only information for households interviewed during the growing
season as well as month of interview fixed effects.

practices of the U.S. and other developed countries, which mostly practice monocropping.

We find that extreme heat reduces the quantity (in absolute and relative terms) of cereals,
but increases the production of tubers. We interpret these results as suggestive evidence that
farmers change crop mix as an adaptive response to extreme heat. In the Peruvian context, tubers
(potatoes) may be used as a risk-coping strategy: they have a more flexible planting calendar and
may more resilient to extreme temperatures, so they can be used as a way to reduce the drop in
income when other crops are failing. Additionally, they provide cheaper calories. Dercon (1996)
documents a similar strategy using sweet potato among Tanzanian farmers with no liquid assets in
the form of livestock.

Our analysis has two important limitations. First, we cannot distinguish between farmer’s
actively changing crop mix from crops’ heterogeneous response to heat: our results could be similar
if potatoes thrive in extreme heat even if farmers do not change crop mix at all. Second, we only
observe short-run responses, within a growing season, so our results are not informative of long-run
adaptation.

Despite these caveats, these results do suggest a limited role for changes in crop mix as a
coping strategy in the short-run. Note, that we focus on total agricultural output, not crop-specific
yields. Thus, our estimates of the effect of extreme heat on productivity already include attenuation
associated with changes in crop mix. Since our estimates are negative and sizable, these results
then suggest short-run changes in crop mix are not enough to offset the harmful effects of extreme
heat.
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Table 4: Impacts of DD and HDD on crop mix

Dep var: In(output) Share of total output
(1) (2) (3) (4) (5) (6)
Crop group: Cereals Tubers  Legumes  Cereals Tubers  Legumes

Average DDs  0.044™*  -0.079"*  0.019**  0.011*** -0.026**  0.002*
(0.009)  (0.015)  (0.009)  (0.002)  (0.003)  (0.001)

Average HDDs  -0.207***  0.182***  0.012  -0.031*** 0.036**  0.004
(0.061)  (0.056)  (0.056)  (0.011)  (0.007)  (0.007)

N 43,251 40,131 34,335 54,214 54,214 54,214
R2 0.454 0.391 0.318 0.380 0.520 0.239

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical
significance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications
include district and climatic region-by-growing season fixed effects, and the same controls as baseline
regression in Table 2. Columns (3) to (5) include only information for households interviewed during
the growing season as well as month of interview fixed effects.

3.3 Other coping mechanisms

The literature on consumption smoothing has identified several mechanisms used by rural house-
holds to adjust to income, and weather, shocks. For example, individuals in affected households can
seek employment off the farm (Colmer, 2016, Kochar, 1999, Rosenzweig and Stark, 1989), migrate
(Kleemans and Magruder, 2017, Munshi, 2003, Feng and Schlenker, 2015) or sell assets, such as
cattle (Rosenzweig and Wolpin, 1993).32

Table 5 explores these mechanisms. Columns 1 and 2 examine whether households adjust to
extreme heat by increasing off-farm employment. We use an indicator of a household member
having a non-agricultural job, as well as the total number of hours worked off-farm.?* These
outcomes capture supply of off-farm employment in the extensive and intensive margin. In both
cases, the effect of extreme heat on off-farm work is very small and statistically insignificant.

In columns 3 to 5 we look for evidence of migration. Due to data limitations, we cannot measure
migration directly. Instead, we use proxy variables such as an indicator of whether any member
has been away from home for more than 30 days, household size, and an indicator of whether the
household receives remittances. None of these variables seems to be affected by extreme weather
and all the point estimates, albeit small and insignificant, show the opposite sign of what we would

expect if migration was a coping mechanism.

32We also examine the effect of HDD on two measures of household consumption: per capita expenditure and
poverty status. We observe a negative, albeit small, effect of extreme heat on these outcomes. The effect on
expenditure is smaller than for agricultural output and the effect on poverty is statistically insignificant. These
findings are suggestive of imperfect consumption smoothing (see Table A.3 in the Appendix).

33These variables are only reported for the week previous to the interview. As in Table 3, we restrict the sample
to households interviewed during the growing season. However, results do not change if we include observations for
the whole year.
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The lack of significant results on migration and off-farm work should be interpreted with caution.
Our analysis focuses on a short time period (within a year) and these adjustments may happen
over a longer time frame. In addition, our measures of labor and migration may be noisy proxies of
actual behavior. These factors likely reduce the power of our statistical analysis and could explain
the insignificant results.

Finally, we examine cattle sales as a possible coping mechanism (columns 7-10). Consistent
with previous findings, such as Rosenzweig and Wolpin (1993), our results show that households
reduce their holding of livestock.>® We find evidence of changes on both the extensive and the
intensive margin, as the probability of showing a decrease in value increases (column 7) and the
real value of current livestock decreases (column 10). The effect seems to come from households
selling, rather than consuming their livestock (columns 8 and 9).

Table 5 shows evidence that households engage in consumption smoothing mechanisms when
exposed to extreme temperatures. Together with the findings on adaptation in production, this set
of results requires further inspection as different explanations are consistent with what we observe.
For example, do farmers use the consumption mechanisms to complement changes in land use or
are these strategies substitutes? If the latter, in the context of subsistence farming and imperfect
input markets, then farmers would only expand land use if there is no other way to cope with the

shock, i.e., if they have no livestock.

34This includes cattle, sheep, horses, llamas and pigs.
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Table 5: Other adjustments to DD and HDD

Off-farm work Migration Livestock buffer
1) (2) 3) @ ) (6) (7) (8) (9)
HH member Hours HH member Receives  Decrease in Current
has off- worked ~— away 30+ private livestock Sold Consumed livestock
Dep var: farm job off-farm days HH size transfers value livestock  livestock value
Average DDs 0.007* 0.038** 0.002** -0.000  0.005** -0.006***  -0.012**  -0.012*** -1.509
(0.004) (0.016) (0.001) (0.013)  (0.002) (0.002) (0.002) (0.003) (4.824)
Average HDDs -0.005 0.030 -0.003 0.002 -0.001 0.028*** 0.024* 0.009 -34.124*
(0.020) (0.085) (0.004) (0.049)  (0.009) (0.011) (0.013) (0.013) (20.174)
Mean outcome 0.469 1.745 0.084 4.325 0.195 0.331 0.515 0.474 887.436
N 22,503 22,503 54,981 54,981 54,981 49,094 49,094 49,094 41,745
R2 0.223 0.248 0.058 0.245 0.148 0.077 0.146 0.239 0.553

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance (assuming district-level clustering): *

p

<0.10, ** p <0.05, *** p <0.01. All specifications include district and climatic region-by-growing season fixed effects, and the same controls as baseline

regression in Table 2. Columns 1 and 2 include only information for households interviewed during the growing season as well as month of interview
fixed effect. Livestock value from Columns (6) and (9) are measured in 2007 USD.



4 Understanding changes in land use

In this section we explore more carefully the nature of the changes in land use as an adaptive
response to high temperatures. We focus on the increase in land use as an important adaptation
mechanism for at least three reasons. First, land is an important agricultural input which, due to
factors such as ill-defined property rights, is usually subject to severe market imperfections. Second,
since unused land can be part of a dynamic productive decision (such as fallowing), adjustments in
land to attenuate current weather shocks may impose productivity losses in the future. Finally, by
focusing on crop yields, the current literature on climate change and agriculture, has neglected this
margin of adjustment. This coping mechanism has also been overlooked by the literature examining

ex-post consumption smoothing.

4.1 Who adapts?

As a first step, we study the interplay between consumption smoothing and productive adaptation
to understand which types of farmers adjust their land use. As discussed in Section 2.1, it is possible
that this adaptive strategy is shaped by the availability of other coping mechanisms, such as off-
farm work or disposable assets. To examine these heterogeneous responses, we run our baseline
regressions interacting HDD with an indicator of whether farmers had livestock before the start of
the growing season or not. The choice of this interaction term is driven by our previous finding
(see Table 5) that selling cattle seems to be among the set of relevant consumption smoothing
mechanism. As a robustness check, we also examine interactions with indicators of availability of
off-farm work.

Our results (see Table 6) suggest that the increase in land use is significantly larger for farmers
who did not have livestock (column 1). This occurs despite both types of farmers experiencing
similar drops in TFP (column 2). We observe similar pattern when comparing farmers with and
without off-farm jobs (columns 3 and 4).3°

In other words, the farmers who respond by increasing land use are the ones who lack other
coping mechanisms. 36 This result is not mechanically driven by cattle owners lacking unused land
that could be put into production. Closer examination shows that cattle owners actually have more
uncultivated land than non-cattle owners. While some of this land may be used for foraging, it is
suggestive that increasing land is a feasible strategy for cattle-owners and that they decide against

it. In that case, our results would indicate that, by a revealed preferences argument, adjusting land

35Result are robust to using number of days during the growing season with extreme temperatures instead of HDD
(see Table A.2 in the Appendix).

36We observe similar heterogeneous responses on child labor (see Table A.4 in the Appendix). In particular, the
increase in child labor is larger for households without cattle. This is consistent with previous evidence by Beegle
et al. (2006) from Tanzania, where the authors find that households respond to shocks by increasing child labor but
manage to offset most of negative impact of the shock if they hold durable assets. Interestingly, they also find that
land does not play a similar mitigating role.
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is a more costly (more undesirable) strategy than selling disposable assets.

Table 6: Temperature impacts on land use and TFP, by type of farmer

Livestock Farmer Only
(1) (2) (3) (4)
Dep var: In(land TFP In(land TFP
used) used)

Average HDD x owned livestock ~ 0.019  -0.175***
(0.016)  (0.067)

Average HDD x no livestock 0.042***  -0.173***
(0.015)  (0.065)
Average HDD x Other activity -0.003  -0.311***
(0.015)  (0.072)
Average HDD x Farmer only 0.048***  -0.106*
(0.016)  (0.059)
Difference 0.023 0.002 0.051 0.205
p-value 0.030 0.956 0.000 0.000
N 54,981 54,972 54,981 54,972
R2 0.326 0.410 0.323 0.412

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate sta-
tistical significance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01.
All specifications include district and climatic region-by-growing season fixed effects, and the
same controls as baseline regression in Table 2.

An alternative explanation is that cattle owners cannot, or do not need to, implement pro-
ductive adaptations. We can test this explanation by examining the heterogeneous effects of high
temperatures on crop mix, by cattle ownership (see Table 7). Contrary to this hypothesis, and in
contrast to the results on land use, we find that both types of farmers, with and without cattle,
change crop mix as a response to extreme heat.3” This finding also rules out concerns that changes

in crop mix, documented in Table 4, were mechanically reflecting an increase in land use.

4.2 When do they adapt? Early and late shocks

The ability to adapt to weather shocks may vary during the growing season. For instance, farmers
may be able to clear land and plant new crops at the beginning of the growing season, but this
response may be more difficult to implement in later stages.

To investigate how timing of the shocks may affect farmers’ adaptive behavior, we construct
separate measures of DD and HDD according to whether the temperature shock happened in the
first (October to December) or the second half (January to March) of the growing season (early

3TWe obtain similar results when interacting HDD with an indicator of having off-farm job instead of an indicator
of cattle ownership. Results available upon request.
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Table 7: Impacts of DD and HDD on crop mix, by type of farmers

Dep var: In(output) Share of total output
(1) (2) (3) (4) (5) (6)
Crop group: Cereals  Tubers Legumes Cereals Tubers Legumes

Average HDD x owned livestock -0.252***  (0.140** -0.009 -0.023*  0.030*** 0.006
(0.062)  (0.056)  (0.058) (0.013)  (0.008)  (0.008)

Average HDD x no livestock -0.133**  0.264*** 0.060 -0.042***  0.043*** 0.002
(0.066) (0.069)  (0.061) (0.010) (0.008)  (0.007)

Difference 0.119 0.124 0.069 -0.018 0.013 -0.004
p-value 0.003 0.019 0.161 0.019 0.002 0.365

N 43,251 40,131 34,335 54,214 54,214 54,214
R2 0.465 0.403 0.323 0.381 0.521 0.239

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance (assuming
district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications include district and climatic region-by-
growing season fixed effects, and the same controls as baseline regression in Table 2. Columns (3) to (5) include only
information for households interviewed during the growing season as well as month of interview fixed effects.

and late DD/HDD). Then, we examine the effect of temperature on productivity, output and land
use.

Table 8 presents our results. Both early and late shocks impact negatively on agricultural
productivity (columns 1-3). This negative effect is smaller for early shocks, although the difference
with the point estimate for late shocks is not statistically significant. One possible interpretation
for this smaller effect is that a wider range of productive adaptations, other than incorporating
more land, such as increasing work effort or other the use of other inputs (such as fertilizers), are
feasible if temperature shocks occur during this period. A biological channel could also be at play:
crops may be more capable to manage high temperatures at this stage.

Interestingly, we find that increases in land use only happen if high temperatures occur during
the first half of the growing season (column 5). Extreme heat during the second half of the growing
season has virtually no effect on land. We interpret this finding as evidence that farmers are more
able to engage in productive adaptations when the shocks happen earlier. Consistent with this
interpretation, we observe that early shocks have a small, and statistically insignificant, effect on
output. In contrast, the effect is larger, and similar in magnitude to the drop in TFP, when shocks

occur late in the growing season.

4.3 Adaptive response or increase in prices?

We interpret the increase in land use as a strategy to attenuate the negative effects of extreme heat.
An alternative explanation is that areas subject to extreme temperature experience a decrease in

the supply of agricultural products. To the extent that there is a positive price effect, then farmers
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Table 8: Impacts of early and late HDD on farmer productivity, output and land

Y/T TFP Y T
Dep var: In(output/ha) In(output) In(output) In(output) In(land used)
(1) (2) (3) (4) (5)
Average FEarly HDD -0.067** -0.064* -0.076** -0.036 0.031**
(0.038) (0.035) (0.036) (0.067) (0.013)
Average Late HDD -0.126* -0.103* -0.109* -0.119* 0.007
(0.063) (0.061) (0.060) (0.015) (0.015)
Input controls No OLS v No No
N 54,938 54,929 54,929 54,938 54,938
R2 0.241 0.405 0.391 0.244 0.313

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance
(assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications include district and
climatic region-by-growing season fixed effects, and the same controls as baseline regression in Table 2. Input
controls: number of household members working in agriculture, total land used and amount spent on hiring
labor, all in logarithms. Instruments for labor and land: household size and land owned, both in logarithms.
First stage F-test is 651.28. P-values for the difference between coefficients are, in order, 0.42, 0.65, 0.65, 0.27
and 0.32.

may be induced to increase production and thus, also the quantity of inputs. If that is the case, our
result may be interpreted as a purely profit-driven decision rather than as an adaptive response.

Formally, by failing to account for output prices, our previous results would suffer from omitted
variable bias. This issue would be less of a concern if prices are set in national markets. In that
case, their influence would be picked up by the set of growing season fixed effects. The problem
would persist, though, if agricultural markets were geographically smaller.3®

In Table 9, we examine this possibility in two ways. First, column 1 includes region-growing
season fixed effects (i.e., a set of around 200 dummies that account for 20 regions in 10 agricultural
years). If agricultural markets were indeed regional, then this approach would control for prices.
Column 2 goes a step further by controlling for the median log prices of cereals and tubers, calcu-
lated at the district level. In both cases, the relationship between HDD and land remains positive
and significant. The magnitude of the effect of extreme temperatures is also very similar to the
baseline results in Table 2.

Second, we examine the effect of temperature on prices of cereals and tubers (columns 3-6). We
observe that prices of both crops increase with extreme temperature when measured in each of the
20 regions in the sample. The effect is slightly stronger for cereals, consistent with the previous
result that farmers tend to move away from these crops. In columns 5 and 6, we reduce the level

of aggregation to the district level and find no significant effects on prices. Taken together, these

38For instance Arag?n and Rud (2013) find evidence that in the northern highlands of Peru prices of agricultural
products are determined locally.
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results suggest that, while regional prices may increase in extremely hot years, changes in prices

cannot fully explain the expansion in land use.

Table 9: Temperature impacts on regional and local prices

Dep var: In(land used)  In(regional price)  In(local price)
Cereals Tubers Cereals Tubers
(1) (2) (3) (4) (5) (6)

Average DD -0.004  -0.004  0.000 -0.002* -0.003 -0.001
(0.005) (0.005) (0.002) (0.001) (0.002) (0.002)
Average HDD 0.038** 0.043** 0.022* 0.009**  0.004 0.007
(0.016) (0.018) (0.012) (0.005) (0.008) (0.016)
Region-GS FEs Yes No No No No No
Control for local prices No Yes No No No No
N 54,981 50,836 54,981 54,981 52,739 52,447
R2 0.320 0.319 0.931 0.910 0.757 0.667

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical
significance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifica-
tions include district and climatic region-by-growing season fixed effects, and the same controls as
baseline regression in Table 2.

5 Predicting the effect of climate change

In this section, we use our previous estimates to predict the damages to yields and agricultural
output associated with higher temperatures predicted in climate change scenarios. Importantly, we
show that these predictions are over-estimated when failing to account for productive adaptations,

such as changes in land use.

5.1 Peru’s climatic regions

As discussed in relation to Table 1, our sample has two distinct climatic and agricultural regions.
On one hand, the coast is hotter and dryer, and farmers are exposed to more harmful degree days.
However, and most importantly, farmers are, on average, substantially better off: they are more
productive, more diversified, and less poor. This is also reflected in the fact that they specialize
on fruits, are more mechanized, and have access to more irrigation. Also, in the coast farmers use
a much greater proportion of their land. These climatic differences become more apparent when
observing the distribution of daily temperature in these two regions (see Figure 4).

We reproduce our main set of results for both regions to show that, despite these differences,

the main set of results remains very similar. In Table 10 we see that extreme temperatures reduce
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Figure 4: Distribution of daily average temperature by climatic region

Average % of days in the growing season
Average % of days in the growing season

0 10 20 30 40 50 0 10 20 30 40 50
Temperature (in Q) Temperature (in Q)

(a) Coast (b) Highlands

Notes: Figures depict the share of days in growing season in each temperature bin.

yields and output and increase land use. Note that the effect on output is somewhat stronger in the
coast while the expansion of land is larger in the highlands. As shown above, this can be explained
by the fact that coastal farmers use their land more intensively. With less ability to adapt to the
shock, farmers suffer a greater drop in output. In any case, as shown in columns 6 and 9, those

differences are not significant between regions.
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Table 10: No differential impact of HDD by region

Dep var: In(output per ha) In(output) In(land used)
Region: Coast  Highlands Coast  Highlands Coast  Highlands
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Average DD 0.004 0.007 0.005 0.003 0.001 -0.004

(0.040) (0.008) (0.039) (0.008) (0.010) (0.006)
Average HDD -0.195**  -0.169* -0.171* -0.084 0.024* 0.085*

(0.082) (0.087) (0.084) (0.092) (0.014) (0.047)
Difference in HDD 0.012 0.076 0.057
impact Highlands-Coast (0.121) (0.125) (0.047)

N 7,961 47,020
R2 0.194 0.269

54,981 7,961 47,020 54,981 7,961 47,020 54,981
0.242 0.189 0.269 0.245 0.223 0.325 0.313

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance (assuming district-level clustering):

*,

p

<0.10, ** p <0.05, *** p <0.01. All specifications include household controls (age, age squared, gender, and level of education of the household
head); soil quality controls (nutrient availability, nutrient retention, rooting conditions, oxygen availability, salinity, toxicity and workability; each
indicating severe, moderate or no constraints to plant growth, from Fischer et al. (2008)); and controls for the share of irrigated land owned by

the household.



5.2 Climate change scenarios

The purpose of this exercise is to highlight two important issues: (1) the heterogeneity of impacts
within a country according to their climatic regions and, (2) the importance of accounting for
farmers’ response when estimating the impact of climate change scenarios. Our exercise does not
account for a multitude of factors that might affect agricultural outcomes and thus should be
interpreted with caution.”

We consider two possible scenarios with increase in average temperature of 1.5°C and 3°C
. The first scenario corresponds to the representative concentration pathway (RCP) 2.6 used in
IPCC (2014), and assumes a steep reduction of greenhouse emissions due to faster adoption of
green technologies. The second is the A1B scenario of the Special Report on Emission Scenarios,
and the RCP8.5 model used in IPCC (2014). This is a “business as usual” scenario with predicted
increases in Peru’s average temperature 3°C to 3.5°C relative to the 1990-2000 period (Gosling et
al., 2011). We use the lower bound and assume a country-wide increase of 3°C. In both scenarios,
average precipitation is predicted to stay within one standard deviation of its natural internal
variability (IPCC, 2014), so we do not assume any change in this respect. For simplicity, we model
each scenario as an even increase of the daily temperature.?

For each scenario, we calculate the predicted change in DD and HDD. To do so, we use data
from 2005-2015 to obtain the average temperature for every day of the growing season for each
survey block k£ in our sample. We use this temperature distribution to calculate the average DD
and HDD (DD}" and HDD;"). Then we increase each day temperature by 1.5 or 3 depending of
the climate change scenario. Using the new distribution, we predict new DD and HDD (DDired and
H DDgTEd). For each location, we define the change in HDD as AHDD, = H DDzzed — HDD;".
We use similar procedure to obtain ADDj,.

We are interested on assessing the importance of taking into account farmer’s responses on
estimating the negative effects of climate change on output. To do so, we also consider separately

effects on agricultural yields. Specifically, we define the predicted effect on yields (output per ha)

39 An important omitted factor is the increased concentration of COz in the atmosphere and its interaction with
changing weather conditions. While lab experiments suggest that higher levels of CO2 could help plant growth, there
is significant uncertainty regarding its interaction with other weather variables and its impact on global agricultural
yields remains hard to predict (Gosling et al., 2011). We also do not consider any impacts from increased flooding
and reduced water access due to glacial melting, nor potential changes of relative food prices.

49We can, however, think of many other mean-preserving spreads that would still fit these mean predicted tempera-
tures. Given the non-linear feature of DD and HDD, these different assumptions can alter the predicted impacts. For
example, in our “business as usual” scenario we could increase all daily temperatures above the median by 6°C and
leave the rest unchanged, resulting as well in an average daily temperature increase of 3°C. This transformation will
mechanically result in stronger negative impacts since we would be skewing the distribution of daily temperatures
towards more HDDs. While we opted for the most straightforward application of climate change forecasts, it is
possible that variance in temperatures might also increase over time, suggesting that our predictions could serve as
a lower bound for actual impacts.
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and output as follows:
Ay; = B1ADDy, + SoAHDD;,

where, y is the outcome of interest for farmer 4 in location k. 31 and Bg correspond to the estimates
for the two regions taken from Table 10.

Table 11 presents our predictions for the whole sample and each natural region (coast and
highlands). There observations stand out as relevant. First, the increase in temperature would
create substantially more harmful temperatures in the coast than in the highlands. The opposite
would be true in terms of good degree days. Columns A and B reflect this results, which is a
natural consequence of the current distribution of temperatures in both regions, as presented in
Figure 4. The coast is already quite warm and has a larger proportion of days already close to
the HDD threshold. Hence, the shift of the distribution due to higher average temperature has a
greater impact on HDD in this region than in the highlands. Additionally, the negative impact of
the increase in HDD in the highlands is partially offset by the benefitial impact of the increase in
DD.

Second, the impacts of increasing temperatures are very heterogeneous: while the coast would
experience sizable losses in terms of yields and agricultural output, the effect on the highlands
would be negligible and even positive (rows C and D). This result is consistent with other studies
finding stronger negative impacts in low-lying areas (Auffhammer and Schlenker, 2014) and strong
regional differences (Deschenes and Greenstone, 2007).

Third, despite the fact that we find small effects on land use (i.e. around 4 percentage points
increase), taking into account farmers’ responses is important. In the coast, ignoring this adaptive
response would mean that the negative effect of high temperatures on agricultural output would be
overestimated by 1.3%. On the contrary, the beneficial effects of higher temperatures in cold places
would be underestimated by 0.3%. Proportionally to the effect on yields, the error is much greater
in the highlands, due to the fact that farmers manage to attenuate the drop in output more than
in the coast, thanks to a greater use of land. That is, these farmers would benefit doubly, i.e. from
higher temperatures and because they engage in more adaptive behavior. This finding is important
for the estimation of the economic costs of climate change for developing countries. They suggest
that extrapolating estimates of the effect of extreme heat on crop yields from samples of farmers in
developed countries or from controlled agronomic studies may significantly bias forecasts of climate

change impacts in areas where traditional agriculture is the norm.*!

41 As previously noted, the more intensive use of land in the short term might reduce productivity in the long-run.
Due to data limitations, we do not include this potential negative effect of climate change in our analysis.
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Table 11: Heterogeneous effects of increased temperatures by region

CC scenario: Scenario +1.5 Celsius Scenario +3 Celsius

Sample: All Coast Highlands All  Coast Highlands
(1) (2) (3) (4) (5) (6)

Effect on temperature over the growing season
A. Average DD 1.383  1.007 1.450 2.724 1.833 2.881
B. Average HDD 0.103 0.493 0.034 0.255  1.167 0.095

Effect on agricultural productivity and output
C. Change in productivity (In(Y/T)) -0.010 -0.092 0.005 -0.029 -0.220 0.005
D. Change in output (In(Y)) -0.010 -0.079 0.002 -0.027  -0.190 0.002

Over-estimation of effect in Y (|D-C|) 0.000 0.013 0.003 0.002  0.030 0.003

Notes: Coefficients to estimate effects are from Table 10.

6 Robustness

In this section we present several robustness checks on our baseline estimates of the impact of

temperature on agricultural productivity, output and inputs presented in Table 2.

6.1 Alternative specifications

In Table 12 we present results for a number of alternative specifications. We start by looking
into additional controls, such as input endowments (namely land ownership and household size,
a proxy for labor force as in Benjamin (1992)), region-growing season fixed effects and month
of interview fixed effects (to account for recall bias if the agricultural season is far in the past).
This is a very demanding specification that flexibly accounts for department-specific trends in
agricultural productivity. Row 1 shows that saturating the regression with these indicators does
not substantially change our estimates. Similarly, results hold when we cluster standard error at a
higher level of aggregation, allowing for shocks to be correlated within provinces (Row 2).

While controlling for month of interview in Row 1 may attenuate some concerns with respect
to the timing of the interview relative to the growing season, we add two more specifications to
check the robustness of our main results. First, recall that our baseline results consider exposure
to temperature in the last completed growing season (October-March). This means, for example,
that for households interviewed in March 2010, we are assigning weather variables for the period
October 2008-March 2009. However, for households interviewed a month later (April 2010) we
would assign weather the outcomes corresponding to the October-2009-March 2010 period. If
agricultural output is affected by the most recent weather outcomes, then by assigning households
the weather of the last complete growing season we would be introducing a significant amount of

measurement error into our estimation. To examine the relevance of this issue, in Row 3 we drop
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Figure 5: Model fit (R?) of weather regressions with different temperature thresholds
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Notes: Figure plots the model fit (R?) for regressions of Equation 1 using different values of Thign, the
thresholds to split between DD and HDD, for the whole sample. Controls include household head’s
characteristics ( age, age?, gender and education attainment), precipitation, its square, indicators of soil
quality, and district and growing season fixed effects.

households interviewed during the growing season. Finally, because the agricultural survey asks
about production in the previous 12 months, in Row 6 we use a measure of degree days and hot
degree days during that period, instead of just using information for the growing season. While a

bit noisier, the main features of our analysis remain very similar in magnitude.*?

6.2 Optimal temperature threshold

In this part we present an alternative way to determine the threshold between DD and HDD,
following Schlenker and Roberts (2009) among others. To do so, we estimate equation 1 varying
the value of 7p;4, in 1 degree intervals from 20°C to 40°C . We record the R-square from each
regression and select the threshold value that results in the best fit. We perform this analysis using
the whole sample and also splitting it by climatic region. Our specification uses log of output per
hectare as main outcome but results are robust to using log of agricultural output, controlling for
input use, and adding a richer set of fixed effects (department-by-growing season). Figure 5 shows
the results of this exercise when conducted over the whole sample. The best fit for this excercise is
achieved at a value of 77,4, = 32°C.

Row 4 in Table 12 shows the results when we apply this alternative threshold to the whole

42 Additionally, in Figure ?? it was clear that one and two-period lead realizations of HHD did not affect current
productivity.
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sample. In Row 5 we allow 75,45, to be different between the hotter coast and the cooler highlands. In

both cases, the main results on yields, TFP, output and land use retain their sign and significance.*3

Table 12: Robustness checks

Y/T TFP Y T
Dep var: In(output/ha) In(output) In(output) In(land used)
(1) (2) (3) (4)
1. Adding endowment -0.166™* -0.140** -0.136™* 0.025%
and additional FE (0.065) (0.058) (0.069) (0.014)
2. Clustering s.e. -0.192** -0.164** -0.157* 0.031*
by province (n=159) (0.074) (0.063) (0.084) (0.016)
3. Dropping sample -0.152* -0.128 -0.109 0.042**
October-March (0.085) (0.079) (0.092) (0.021)
4. Common HDD -0.128*** -0.112*** -0.103** 0.022**
threshold at 32°C (0.040) (0.037) (0.044) (0.010)
5. Region-specific HDD -0.156*** -0.135*** -0.133** 0.019*
threshold (32°C and 36°C (0.050) (0.046) (0.055) (0.011)
6. Exposure to temperature -0.230** -0.205** -0.151 0.069**
in the last 12 months (0.115) (0.101) (0.123) (0.027)
Input controls No Yes No No

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance

(assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All specifications include district
and climatic region-by-growing season fixed effects, and the same controls as baseline regression in Table
2. Input controls: number of household members working in agriculture, total land used and amount
spent on hiring labor, all in logarithms. Each row presents the estimates using a different specification.

7 Conclusion

How do poor farmers mitigate the impact of extreme temperature events? We show evidence of
adaptation along several margins including livestock depletion, child labor and, ultimately, the
expansion of land used for agricultural production. The effect on land use is only present when
households do not have alternative sources of consumption or income smoothing. This is consistent
with the idea that some land is left unused to recover, and implies that interrupting the process
may have deleterious effects in future productivity. In fact, households that can dispose of assets
or that do not fully rely on agricultural income do not engage in this practice when exposed to
similar shocks.

Taken together, our results have important implications for the analysis of climate change

43Results are also robust to the use of quadratic effects of temperature on TFP, as in IMF (2017).
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in the context of traditional subsistence farming in developing countries. First, as vulnerable
households adapt their production in seasons with extreme temperatures, they successfully offset
part of the negative impact on agricultural output. This questions the usefulness of estimates of
the link between hot temperatures and yields obtained from other contexts where these short-run
responses are not available or unlikely (such as studies from developed countries or from controlled
experiments). Second, while in the short run farmers can attenuate shocks by using more land, it
is less clear whether this practice is sustainable in the long run, as extreme events become more
regular and land is not allowed to fallow as needed. Third, an appraisal of potential effects of
climate change in developing countries should allow for regional variation, as warmer temperatures
may benefit some regions while harm others. Fourth, our results suggest that instruments such as
index-insurance that are linked to the measurement of hot days during the growing season could
potentially benefit households engaged in traditional farming.

Some important questions raised in this paper remained unanswered, and may be relevant in
terms of understanding the links between short-run adaptation to weather shocks, climate change
and welfare. Temporary migration, changes in agricultural practices and methods, and the exact
timing of the responses we observe could not be fully addressed due to data constraints, and are
likely to play a significant role. Similarly, medium to long run costs of current adaptation in
terms of land productivity or other unobserved private costs (e.g. on health, education or well-
being) also deserve further attention as well as more appropriate data. Finally, while satellite data
provides a good fix for the lack of reliable high frequency data in rural areas in developing countries,
improvements in measurement of temperature are necessary to make progress in the understanding

of the effects of a changing climate in areas and populations that will likely be the most affected.
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ONLINE APPENDIX - NOT FOR PUBLICATION

A Additional tables

Table A.1: Effect of % days with harmful degrees on agricultural productivity

and output

Y/T TFP Y

Dep var: In(output/ha) In(output) In(output) In(output)
(1) (2) (3) (4)

% days with harmful -1.065*** -0.924*** -1.022*** -0.867**
degrees (0.316) (0.294) (0.286) (0.360)
Input controls No OLS v No
N 54,981 54,972 54,972 54,981
R2 0.241 0.405 0.390 0.244

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical
significance (assuming district-level clustering): *p <0.10, ** p <0.05, *** p <0.01. All
specifications include district and climatic region-by-growing season fixed effects, and the
same controls as baseline regression in Table 2. First stage joint F-test is 365.1.
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Table A.2: Effect of days with harmful degrees on land use and
TFP, by type of farmer

Livestock Farmer Only
(1) (2) 3) (4)
Dep. var: In(land TFP In(land TFP
used) used)
% days with HDD 0.098  -0.992***
x owned livestock ~ (0.100)  (0.299)
% days with HDD ~ 0.237***  -1.009***
x no livestock (0.089)  (0.309)
% days with HDD 0.016  -1.663***
x Other activity (0.100)  (0.322)
% days with HDD 0.261***  -0.630**
x Farmer only (0.095)  (0.287)
Difference 0.140 -0.017 0.245 1.033
p-value 0.007 0.932 0.000 0.000
N 54981 54972 54981 54,972
R2 0.327 0.411 0.323 0.413

Notes: Standard errors clustered at the district level (in parenthesis). Stars
indicate statistical significance (assuming district-level clustering): *p <0.10,

** p <0.05, *** p <0.01.

All specifications include district and climatic

region-by-growing season fixed effects, and the same controls as baseline re-

gression in Table 2.

Table A.3: Effect of temperature on agricultural output and household

consumption
Y C
(1) (2) (3)
Dep. var: In(agric. output) In(p.c. expenditure) Poor
Average DDs 0.006 0.020*** -0.012%**
(0.009) (0.003) (0.002)
Average HDDs -0.157** -0.034** 0.012
(0.075) (0.015) (0.011)
N 54,981 54,981 54,981
R2 0.244 0.456 0.265

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate
statistical significance (assuming district-level clustering): *p <0.10, **p <0.05, ***
p <0.01. All specifications include district and climatic region-by-growing season
fixed effects, and the same controls as baseline regression in Table 2.
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Table A.4: Effect of temperature on off-farm and child labor, by type of farmer

Growing Season All
(1) (2) (3) (4) (5) (6)
HH members HH Hours HH member HH Hours
Dep var: in farm in farm  Child Labor in farm in farm  Child Labor
Average HDD x owned livestock 0.069*** 0.075** 0.037* 0.012 0.005 0.016
(0.021) (0.032) (0.021) (0.011) (0.017) (0.013)
Average HDD x no livestock 0.057*** 0.095*** 0.072%** 0.009 0.029 0.039***
(0.022) (0.035) (0.022) (0.012) (0.026) (0.014)
Difference -0.012 0.020 0.035 -0.002 0.025 0.023
p-value 0.374 0.398 0.021 0.755 0.167 0.019
N 22,500 22,503 11,990 54,974 54,981 29,366
R2 0.301 0.310 0.318 0.270 0.275 0.270

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance (assuming district-level clustering):
*p <0.10, ** p <0.05, *** p <0.01. All specifications include month, district, and climatic region-by-growing season fixed effects, and the same
controls as baseline regression in Table 2. Columns 1-3 restrict sample to households interviewed during the growing season, while columns
4-6 use all the available observations.
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