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Abstract

Investing in productivity-enhancing inputs is complicated by unknown
ex ante economic returns that can vary widely over space and time. Never-
theless, decision makers in Sub-Saharan Africa must choose where to invest
scarce agricultural budgetary resources. To assist decision makers with soil
health investments, we estimate a fertilizer response model using an exper-
imental crop trial metadataset (which includes around 20,000 observations
spanning 18 countries and nine years) with geocoded rainfall and temper-
ature data and newly available soil map data. We use a machine learning
algorithm to select a heterogeneous fertilizer response model specification
that performs well in predicting fertilizer response outside of the estimation
sample. Using this fertilizer response model and a synthetic climate dataset,
we simulate site-specific, forward-looking predictions of fertilizer response

across Sub-Saharan Africa. The resulting profitability assessment tool allows
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decision makers to visualize the site-specific probability of achieving prof-
itability objectives when climate conditions are unknown. We find that, while
there are many sites where fertilizer use is likely to be profitable even where
fertilizer is relatively expensive, there are also some places where fertilizer use
is unlikely to be profitable even if fertilizer is relatively inexpensive. We ex-
plore the implications for decision makers who are designing and geograph-

ically targeting soil health interventions.

Acknowledgments

We are grateful to the International Food Policy Research Institute for funding
this research, with funding originating from the Bill & Melinda Gates Founda-
tion. We thank Chris Barrett for his leadership and guidance. Initial seed funding
was provided through the National Science Foundation IGERT program. We also
thank Samuel Gameda, James Warner, Todd Benson, Jawoo Koo, Bart Minten, Ale-
mayehu Seyoum Taffesse, and Shahid Rashid of the International Food Policy Re-
search Institute for their contributions to this effort. We are grateful to Selamyihun
Kidanu, Jeffrey Reid, and Khalid Bomba of the Ethiopian Agricultural Transfor-
mation Agency, Megan Sheahan, David Lobell, Lin Xue, Anthony Perello, David

Flannelly, Zhaoyu Zeng, and Jeff Mullen. Any errors are our own.

1 Introduction

Three out of every four poor people in developing countries live in rural areas,
and most of these people depend on agriculture for their livelihoods (World Bank
2008). African governments, NGOs, and the international community have re-
sponded to agriculture’s importance within Sub-Saharan Africa (the region of the
world where poverty remains the most concentrated) by investing heavily in agri-
cultural development in recent decades. Despite large increases in investments,

agricultural development budgets are still limited and decision makers must tar-



get these resources.

One way to resolve the difficulty of targeting is to develop better ways to iden-
tify interventions that are likely to be profitable. Defining profitability in the con-
text of agriculture is not simple, though. Returns to input use are site specific, de-
termined by soils, elevation, slope, prevailing climatic conditions, and crop man-
agement. Prices vary from site to site, with location and infrastructure quality
determining the costs of procuring inputs at the farm level. Output prices are
determined by local market conditions, depending on the balance of supply and
demand, storage infrastructure, and transportation costs to other markets (Benin
and Yu 2013). Furthermore, farmers must purchase inputs at the time of planting,
before climatic conditions and output prices are known, forcing them to gamble
on whether or not inputs will be profitable (Chavas and Holt 1996). In short, re-
turns to agriculture are driven by spatial heterogeneity in growing conditions and
uncertainty about climate conditions (Jayne and Rashid 2013).

In this paper, we develop a forward-looking profitability assessment tool that
can be used to generate site-specific, probabilistic distributions of the returns to
fertilizer use. Previous targeting efforts generally do not account for as many
sources of spatial heterogeneity, nor do they account for uncertainty in weather re-
alizations. Typical fertilizer response studies are location and time specific, mean-
ing the conclusions of the study apply only to that location (or a very similar
location) and if the weather repeats itself. We extend this approach by integrat-
ing extensive agronomic trial data with high resolution weather data and newly
collected soil data to estimate the conditional yield response to inorganic fertilizer
treatment in maize. We use a machine learning algorithm to identify the yield
response model that performs best outside of the estimation sample.

To support investment planning and priority-setting in the face of climatic risk,
we pair this fertilizer response model with a synthetic weather dataset to similate
site-specific, ex ante fertizer profitability predictions across Sub-Saharan Africa.
This forward looking tool allows users to visualize the probability of achieving a
user-defined profitability objective, given stochastic realizations of climate condi-

tions and heterogeneous growing conditions. Such a tool can play a central role
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in planning climate smart agricultural investments, especially as the underlying
distributions for key climate variables are evolving with climate change (Burke,
Lobell, and Guarino 2009).

We find that this ex ante profitability assessment, which explicitly incorporates
probability-oriented and spatially explicit factors, leads to different profitability
conditions compared to “business as usual.” We define “business as usual” as tak-
ing regionally estimated responses to fertilizer (derived from experimental or ob-
servational studies) and valuing the costs and benefits according to recent prices.
In about 70% of African sites where maize is grown, fertilizer profitability predic-
tions do not change based on whether an ex ante or an ex post measure is used.
However, in the remaining 30% of the sites, the ex ante profitability assessment is
different than the ex post one. Decision tools like the one we have created can sup-
port policy planners’ efforts to develop interventions that are robust in the face of
climate uncertainty, and that account for the highly variable growing conditions
present in their domains. With better decision tools, planners can make climate-
smart agricultural productivity investments while more efficiently using limited

resources.

2 Modeling Fertilizer Returns

The profitability of an agricultural technology is a key determinant of its adoption
and use by farmers (Feder, Just, and Zilberman 1985). Holding all else equal, it is
unreasonable to expect farmers to adopt a technology if the value of the increased
output generated is less than the cost of the technology. The Value-to-Cost Ratio
(VCR) is a single measure that incorporates the private benefits and costs that a
farmer faces when using an input or technology (Equation 1). Here, the change in
output for crop y is depicted by Ay. The input, in this case, is inorganic fertilizer
applied in quantity ¢ (f,), as compared to no fertilizer use. The output price is p*,

and the fertilizer price is p’.



Ay - p’ (1)

While profitability is a very powerful concept in economic analysis, VCR is

VCR,(f,) =

often used quite bluntly. Calculations of VCR are often based on aggregate area
statistics or a few data points from model farms. This is problematic for several
reasons. Profitability of input use varies systematically from site to site, with geo-
graphical features such as slope, aspect and elevation that influence temperature
and precipitation; with underlying soil properties; with the farmer’s transport
costs, which affect farm gate prices for inputs and outputs; and over time, as man-
agement practices affect productive capacity. As a result of site-specific hetero-
geneity in the determinants of profitability, farmers who are located in agricultur-
ally less favorable and remote locations will systematically face lower profitability
than the regional average, while farmers in more favorable and less remote loca-
tions will face higher than average profitability. Decision-makers can refine their
predictions of profitability by accounting for these geographical determinants of
profitability. Because determinants of input use profitability, i.e., agricultural fa-
vorability and market access, are often correlated with socioeconomic variables
such as poverty (Chamberlin and Schmidt 2012; Harou et al. 2013; Dercon and
Christiaensen 2011), improved intervention targeting has both efficiency and dis-
tributional implications.

A second problem with profitability assessment is that it does not explicitly
account for the uncertainty that farmers face when determining, in expectation,
whether adopting a technology or input is likely to be profitable. It is important
to recognize that farmers make their decisions in the presence of uncertainty re-
garding the marginal value of output that will result from use of a technology
or input. Uncertainty can be found in crop responses depending on stochastic
climate realizations and also in market fluctuations of input and output prices,
since farmers generally do not know the market price they will receive for their
crop at the time inputs are purchased. According to economic theory, farmers will

optimally use less fertilizer when the output distribution faced is more variable



(Anderson and Hardaker 2003). Point estimates of profitability necessarily imply
that the crop response and output prices are certain (Spielman, Kelemwork, and
Alemu 2011; Morris et al. 2007). However, assessing profitability in this way is
only helpful for determining ex post whether using an input was profitable. Since
farmers do not have the benefit of hindsight when they must decide whether or
how much to invest in an input, using a deterministic profitability measure, rather
than a probabilistic one that incorporates uncertainty, could lead one to conclude
that farmers are under-using a technology when they are not.

The limitations of VCR as a metric to predict input use profitability and input
demand by farmers are well known to researchers. Often, researchers will account
for shortcomings of the VCR measure by adjusting the target profitability thresh-
old. That is, even though a VCR need only exceed 1 for use of technology to be
profitable, researchers look for a VCR greater than 2 to be confident that the bene-
fits of using an input outweigh the costs (Morris et al. 2007; CIMMYT Economics
Program 1988). The assumption is that if the VCR is big enough on average, then
profitability is robust, even though many farmers will have lower than average
VCR, and risk may also play an important role in farmers’ decisions. Our concept
of robustness, by contrast, relates not only to how profitability, on average, com-
pares to a threshold but also how uncertain that profitability outcome is. Given
the same expected profitability, one would expect farmers to perceive a technol-
ogy to be more robust if profitability falls below the threshold once every ten years
compared to once every three years.

In Equation 2, we introduce a site- and year- specific value-to-cost ratio (VCR)
for a representative farmer in location i at time ¢ applying ¢ quantity of fertilizer

: : f .
(f) at unit price p;, to crop y:

y
- n 0 pl
VCRi)[(fq’ 05 Xia wit) = [y(fq, 95 X[’ wit) _y(f()’e’ Xi’ (U[[)] ’ [f (2)
q- Dy

0 refers to a vector of inputs and technologies used (e.g., seeds, non-fertilizer

inputs ), X; is a vector of time-invariant location conditions (soils, elevation, slope,

etc.), and wy, is a vector of climate variables in location i and period . The VCR



contains the expression for the average agronomic efficiency per kg of fertilizer
applied compared with an application of zero fertilizer, (y(f,) — y(f))/q.

In the ex ante framework, VCR is a random variable with probability distri-
bution f(VCR). The intent is not to study farmer behavior under risk, but to un-
derstand the distributional aspects of returns to fertilizer within a given location.
Input use decisions, both regarding fertilizer use f, and other inputs (), are deter-
mined exogenously in this framework, meaning that the fertilizer response func-
tion applies to a model farmer who is hypothetically assigned to either use or not
use fertilizer, and the fertilizer use decision is not modeled. Within each location,
VCR,; is a function of a vector of climate variables, w;. Prices (p}) are assumed to
be orthogonal to climate variables, which is consistent with grain price behavior
in a small, open economy.

For a given profitability threshold 7, we will evaluate robustness according to
the probability that VCR is expected to exceed that threshold. This can be derived

from the cumulative distribution function for VCR in location i:

PR(VCR; >T)=1-F(VCR(T)) (3)

Because w, is a vector rather than a scalar, it makes sense to use a Monte Carlo
approach to derive the CDF of VCR; in each location, sampling from a synthetic
climate dataset generated from historic precipitation and temperature data (w)
that spans all of the sites. We describe the process by which the synthetic weather

data are generated in the next section.

2.1 Understanding fertilizer response

In order to estimate the CDF of VCR in a given location, we must first estimate
the parameters of a representative farmer’s production function, y(-). Of particu-
lar interest is the extent to which crops’ response to fertilizer, y(f,) — y(fy), varies
with site characteristics (X), with climate realizations (w;,), and with the other tech-
nologies and management practices employed (). There is ample agronomic ev-

idence, from Sub-Saharan Africa and other regions of the world, that the agro-
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nomic response to fertilizer depends on rainfall and temperature, soil conditions,
technologies used, and other soil health practices (Yanggen et al. 1998; Vanlauwe
and Giller 2006).

Soil organic matter (SOM) can influence soil structure, moisture retention, and
nutrient retention in soil, which is important because applied nitrogen leaches
readily through the soil profile, becoming unavailable to crops (Magdoff and Van
Es 2000). Marenya and Barrett (2009) show that the yield response to fertilizer
varies with SOM in Western Kenya. An intensive soil mapping effort in Ethiopia
suggests low SOM levels in the highlands. Soil pH also influences nutrient reten-
tion and availability to plants, with fertilizer-SOM and fertilizer-mineral interac-
tions typically weakened as soils become more acidic. Soil micronutrients gener-
ally become more soluble in acidic soils, which can increase their availability to
crops (Sarkar and Wynjones 1982).

This spatial heterogeneity in precipitation is important to consider when as-
sessing the returns to fertilizer in a given location. The majority of agriculture in
Sub-Saharan Africa is rain-fed, and empirical evidence suggests that rainfall is the
common yield-limiting factor among all major cereals (You et al. 2010). Haefele
et al. (2006) show that fertilizer response decreases with increasing water stress
during the growing season. To the extent that crop responses to soil health inter-
ventions are determined by rainfall levels, rainfall conditions in a single year will
be a strong determinant of the profitability in that year of soil health interventions
such as fertilizer application.

Temperatures also vary in space and are important determinants of crop
growth. Lobell et al. (2011) show that there is a nonlinear response between tem-
perature (growing degree days) and yields in African maize. Their results sug-
gest that nitrogen application can help mediate the effects of heat stress. Using
side by side comparison of fertilizer treated and non-treated on-farm experimen-
tal plots across a large sample of Malawi model farms over multiple growing sea-
sons, Harou et al. (2017) find that fertilizer response varies with temperature and
rainfall. Uyovbisere and Lombim (1991) repeat agronomic trials over multiple

years and also find that fertilizer responses vary with rainfall and temperature.
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2.2 Estimating parameters of a fertilizer response function

Because of the important interactions between fertilizer response, site-specific
characteristics, management practices, and climate realization, empirical mea-
surement of the fertilizer response requires estimating the parameters of a pro-
duction function that is sufficiently flexible to allow for key interactions. Particu-
larly, the production function should not be additively separable with respect to
fertilizer use and the other variables — climate, location characteristics, and other
technologies — or the specification will assume away the possibility of these inter-
actions.

There are four typical approaches to estimating the parameters of a fertilizer re-
sponse function. First, agronomic trials are commonly used to compare two plots
with different fertilizer doses while holding all other variables constant. Some
agronomic trials address a few additional management practices, such as crop va-
riety or irrigation, through a factorial design. Measures of agronomic efficiency
of fertilizer used on maize in East Africa exhibit a large spread. “High” responses
are typically around 25 kg maize per kg nitrogen, while low responses are around
5 kg maize per kg nitrogen (Heisey and Mwangi 1997). Agronomic trials are typ-
ically characterized by very small sample sizes, low variation in climate and soil
conditions, and a limited number of treatment doses from which a crop response
curve can be derived.

It can be difficult to capture the interactions between fertilizer use and other
variables using an agronomic trial dataset, either because the other variables are
not recorded or because they do not vary across the observations. Though rain-
fall and temperature may not be recorded as part of an experimental study, they
can be recovered from historical data by matching the location and time of the
trial with historical climate data. However, one may not be able to confirm that
supplemental water was not added to the crops under the trial. Furthermore, one
cannot fully identify the contributions of different interactions between fertilizer
and other variables to the local average treatment effect. The fertilizer response
parameter, therefore, has limited validity outside of the trial setting. Furthermore,



agronomic trial datasets are not well-suited for estimating parameters of a pro-
duction function apart from the treatment effect on which the trial focuses.

Another concern about using agronomic trial data to estimate production func-
tion parameters is that, often, they are not conducted in locations that are repre-
sentative of farmers’ fields (Nelson, Voss, and Pesek 1985). Yield responses are
typically higher in experimental stations than on farmers’ fields (Yanggen et al.
1998). Higher use of complementary inputs, more intensive weeding, and opti-
mal timing of planting and fertilization could bias fertilizer response upwards in
experiment stations relative to farmers’ fields (Heisey and Mwangi 1997). Studies
have found nutrient responses often tend to be larger in “depleted” soils, where
nutrients are limiting. If nutrients are more likely to be limiting on farmers’ fields
than on experiment stations, then the fertilizer response at experiment stations
will be biased downwards relative to farmers’ fields.

Model farm trials are a second source of data from which to estimate fertilizer
response parameters. These trials typically involve side-by-side comparisons be-
tween fertilizer treatments on different farmers’ fields. Usually, but not always,
the crop production is managed by farmers rather than scientists supervising the
studies. Fertilizer practices are randomly assigned at the farm level, and typically
the farms cover varying soil and climate conditions, allowing one to estimate key
parameters of the fertilizer response function. This was the approach followed by
Harou et al. (2017). The main concern with these datasets is that model farmers
do not represent the farming population as a whole. Typically, they are better ed-
ucated, more closely tied in with the extension system, and may differ in other
characteristics. Fertilizer response parameters generated from model farm trials
tend to be smaller in magnitude than those from experimental trials (Yanggen
et al. 1998). Another concern is that these trials typically run for one to two grow-
ing seasons, so it is difficult to separately identify the effects on production of
time-invariant characteristics, such as soil type, from the effects of temperature
and precipitation variation.

Observational farm surveys comprise a third source of data that can be used

to estimate the parameters of a crop production function by exploiting cross-

10



sectional variation. The main challenge with this approach is that the decision
to use fertilizer is not randomly assigned, and is likely correlated with unobserv-
able farm and farmer characteristics, such as expected returns to fertilizer use and
farmer ability, which then can bias the parameter estimates. Fertilizer response
measures from observational data tends to be the smallest (compared to estimates
based on agronomic trials or model farms) (Yanggen et al. 1998). A recent com-
parison of nitrogen use efficiency measures derived from surveys with those from
agronomic trials in Malawi suggests that farmer management practices, such as
weeding, crop rotation, and timing and intensity of inorganic fertilizer applica-
tion, can explain why nitrogen responses are lower on farmer fields than in re-
search stations (Snapp et al. 2014).

The last approach to estimating fertilizer response is through the use of a
fully mechanistic crop growth model. These models are generally highly sensi-
tive to their data inputs (e.g., timing of fertilizer application, daily rainfall and
solar radiation). Furthermore, crop models are typically not calibrated to local
conditions, which would require additional experimental or observational data
anyway. Mechanistic crop models underlie estimates of returns to input use in
the Global Agro-Ecological Zones assessments and the Harvest Choice platform
(Guo, Koo, and Wood 2009; Fischer et al. 2012).

Drawing on the strengths and weaknesses associated with the different ap-
proaches available, we assemble a meta-experimental dataset, pairing individual
trial data points with their respective rainfall, locational, and management prac-
tice control variables. We then use the meta dataset to estimate production func-
tion parameters, following Lobell et al. (2011). Thus our dataset spans a wide
range of climate and soil conditions, allowing us to estimate the interactions be-
tween climate and soil conditions and fertilizer response. Because fertilizer treat-
ment is experimentally assigned within these trials, we avoid bias arising from
selection into fertilizer use, which would be an issue if the data came from obser-

vational datasets.
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3 Data

We estimate the parameters of the crop response to fertilizer using the dataset of
multiple maize trials across Eastern and Southern Sub-Saharan Africa compiled
by Lobell et al. (2011). The dataset includes trials managed by the International
Maize and Wheat Research Institute (CIMMYT), national agricultural research in-
stitutes, and private seed companies. The trials span 9 different years (1999-2007),
18 different countries, and 9 different agro-ecological zones. We focus on maize,
which is the most widely grown crop in Sub-Saharan Africa, accounting for 27%
of all cereal area, 34% of all cereal production, and 31% of all calories from cereals
in the region (Smale, Byerlee, and Jayne 2013).!

The crop trials were conducted to test performance of new maize varieties in
various conditions, and the metadataset was compiled in order to study maize
response to water and temperature stress (Banziger et al. 2006; Lobell et al. 2011).
The data were not collected in order to estimate fertilizer response, although many
of the varieties were tested under a low-nitrogen management regime, in which
crops were planted on fields that were depleted of nitrogen due to continuous
cropping of maize over previous seasons, removing all stover after previous har-
vests, and witholding application of organic and inorganic fertilizers. In optimal-
management trials, the recommended amounts of nitrogen fertilizer were added.
All other crop management practices were held constant between low-nitrogen
and optimal-management trials.

Using the location of each experiment site, we match each crop trial observa-
tion with climate data. We use daily temperature and precipitation data at 0.25
degree resolution from the United States National Aeronautics and Space Ad-
ministration (NASA) AgMERRA climate forcing dataset for agricultural model-
ing.? In the crop growth period, which we define as five months after planting

IThis approach could be expanded to other crops with additional trial data.
2AgMERRA falls under the Agricultural Modeling dataset that is part of the Modern-

Era Retrospective Analysis for Research and Applications effort. It can be accessed via:
https:/ /data.giss.nasa.gov/impacts/agmipcf/agmerra/
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(Banziger et al. 2006), we calculate monthly total precipitation and average tem-
perature for each site. The third month generally coincides with flowering and
silking, a period that is considered especially sensitive to water and temperature
stress. For temperature data, we use the average monthly temperature, while for
precipitation, we use the accumulated monthly precipitation.

We match the trial sites with soil data from the Africa Soil Information Ser-
vice (AfSIS).? The 250 meter resolution soil data include estimates of several soil
characteristics at different soil depths, such as soil cation exchange capacity, pH,
texture, and water retention capacity. Finally, we match the trial data with Agro-
ecological zone (AEZ) classifications from GAEZs.* In the estimation dataset, trial
observations that fell under the low-pH, drought management, or streak virus
management regimes were not included in the analysis. The fertilizer elimination
treatment was extremely scarce under these management scenarios. °

The first two columns of Table 1 show mean descriptives for both no-fertilizer
and optimal-fertilizer observations from the trial dataset. The third column shows
the normalized difference between fertilizer treatments for each variable.® Yields
in the no-nitrogen sites are 1.92 t/ha, about half of yields in optimally managed
sites, which average 4.31 t/ha.

The no-nitrogen trial sites differ from the optimal fertilizer sites in climate and
soil conditions. While the trial occurs over 123 different trial sites, the no-fertilizer
treatment takes place in only 23 of those sites. On average, the sites that include
no-fertilizer observations tended to be slightly warmer and slightly drier than
the sites where low-nitrogen treatment was not used. To account for this imbal-
ance, we estimated the probability that each site in the dataset included some no-

fertilizer trial observations, using the site level mean temperature, precipitation,

Shttp:/ /www.isric.org/content/african-soilgrids-250m-geotiffs
“These are accessed through the Harvest Choice platform, available at

http:/ /harvestchoice.org/maps/agro-ecological-zones-sub-saharan-africa.
>We lose 5,629 observations that are under low pH, drought, or maize streak management. The

remaining estimation sample contains 20,513 observations.
The normalized difference is the difference in average between the two groups scaled by the

square root of the sum of variances across groups.
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and soil characteristics as predictors. The summary statistics, re-weighted by the
site-level predicted probability of conducting no-fertilizer trials, are depicted in
columns 4-6 of Table 1.

After weighting observations by the site-level probability that the no-nitrogen
treatment occurs at the site, the normalized difference between no-fertilizer and
optimal-fertilizer sites for all variables is smaller than the 25% that would cause
treatment effect estimates to be sensitive to model specification (Imbens and Ru-
bin 2015). Even though the differences are statistically significant for almost all of
the climate and soil variables, they are not especially large in magnitude. Because
nitrogen treatment was experimentally assigned, rather than selected by farmers
based on expected response, prior knowledge, or a financing constraint, a clean

identification of the effect of nitrogen on crop growth is ensured.
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Table 1: Summary statistics of model variables by fertilizer management strategy.

No Optimal Normalized No Optimal ~ Normalized
Fertilizer Fertilizer Difference  Fertilizer = Fertilizer = Difference
(weighted) (weighted) (weighted)
Yield (t/ha) 1.92 4.31 0.81 2.07 3.82 0.62
(1.28) (2.67) (1.28) (2.51)
Fertilized plot (dummy) 0.00 1.00 0.00 1.00
(0.00) (0.00) (0.00) (0.00)
Temp months 1-2 (mean, ° C) 22.78 22.26 -0.11 23.74 23.20 -0.14
(3.59) (3.14) (2.87) (2.73)
Temp month 3 (mean, ° C) 2211 21.77 -0.07 22.98 22.58 -0.10
(3.67) (3.31) (2.82) (2.85)
Temp months 4-5 (mean, ° C) 20.45 20.33 -0.03 20.96 20.76 -0.05
(3.38) (3.03) (2.57) (2.69)
Precip months 1-2 (tot, mm) 298.80 321.81 0.12 277.62 291.31 0.08
(111.58) (152.88) (100.69) (149.75)
Precip month 3 (tot, mm) 158.59 144.75 -0.10 165.79 146.26 -0.13
(97.83) (107.50) (107.29) (108.70)
Precip months 4-5 (tot, mm) 125.63 130.41 0.03 119.92 114.53 -0.03
(115.27) (119.25) (110.57) (109.65)
Soil cation exchange capacity 1 g, 12.60 0.06 11.02 11.73 0.08
(centimol charge per kg soil)
(7.42) (8.62) (5.79) (7.38)
Soil pH (pH determined in 5.92 5.99 0.11 6.00 6.06 0.10
soil/water mixture)
(0.43) (0.42) (0.41) (0.41)
Soil clay (share by volume) 0.35 0.27 -0.29 0.31 0.26 -0.23
(0.22) (0.13) (0.20) (0.11)
Soil silt (share by volume) 0.15 0.16 0.10 0.15 0.15 0.09
(0.06) (0.07) (0.04) (0.05)
Poor drainage (dummy) 0.13 0.17 0.06 0.13 0.18 0.08
(0.34) (0.37) (0.34) (0.38)
N 2599 16164 2599 16164




4 Results

In estimating the agronomic response to fertilizer use, we begin with a yield
model specification that includes a full set of possible regression variables. In ad-
dition fertilizer use, we include soil characteristics (pH, cation exchange capacity,
clay and silt content, and soil drainage), and precipitation and average temper-
ature for three different periods within the growing season. We also include all
possible interactions between these variables and second order polynomials for
each continuous variable. Equation 4 depicts the full yield model, with X depict-
ing the matrix of j explanatory variables, ¥ depicting yields in tons per hectare,”
and F representing fertilizer use.

Optimal fertilizer management sites are assigned a fertilizer treatment dummy
equal to one, while low-nitrogen management sites were assigned a fertilizer
treatment dummy of zero. The design does not allow for estimating a continuous
fertilizer dose effect on crop growth. It is, however, appropriate for estimating the
binary impacts of adopting fertilizer at the level recommended by agronomists. In
order to identify the heterogeneity of the response to fertilizer across different soil
types and climate realizations, we interact the fertilizer treatment dummy with all

of the other yield function variables.

1
Yo = Bo + Zﬁijit + ZZE,Bijjithit + BrFy + ZﬂFjFizXﬁz + & (4)
J J ok J

From the list of possible regressors specified in Equation 4, we use a stepwise
leaps and bounds algorithm to select a subset of regressors based on the Akaike
information criterion (Lindsey and Sheather 2013). In order to balance in-sample
fit with out of sample predictive power, we use k-fold cross-validation to evaluate

model performance. We divide our sample randomly into 5 partitions of roughly

"We estimate both the log-log version of the model (with log dependent variable and log in-
dependent variables) and the level-level form (with both dependent and independent variables
in level form). The results are materially quite similar, and very few predicted yield values are
negative, so we use the level form. The log form model is available on request
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equal size, keeping all observations from the same site in the same partition. For
each of the 5 partitions, we run a variable selection algorithm withholding that
partition. Then we predict yields for the left out partition and calculate the root
mean square error of predict yields for that left out sample. In each regression, we
include, as weights, the predicted probability that the trial’s site included some
no-fertilizer trial observations, as described in the previous section.

We then have five possible models, one for each of the k data partitions.® For
each model, we report the regression coefficients, the average RMSE for predicted
yields when the model is estimated on each of the k partitions, and the average
adjusted R*> when that model is estimated on each of the five partitions. These
parameters, as well as the in-sample and out-of-sample performance metrics, are
shown in Table A.1. Table A.2 shows the parameter estimates when the selected
model is run on the full trial dataset. Because trials occur in a limited set of sites,
within which regressors are correlated, we wish to cluster our standard errors at
the site level. We estimate a feasible generalized least squares regression, which is
more efficient than an OLS model with robust standard error corrections. We also
include site-specific weight reflecting the probability that the trial site includes
some no-fertilizer observations. It is not possible to use our approach in a fixed
effects modeling framework given that model selection relies on predicting yields
in sites from a left out data partition. Furthermore, we would not be able to obtain
coefficients for any time-invariant variables, such as soil characteristics, with a
tixed effects model.

The marginal effects of the explanatory variables at the median values of the
data are shown in Table 2 for each of the specifications described above. The
standard errors are generated by repeatedly sampling parameter vectors from the
variance-covariance matrix. At the median values of the variables, yields are de-
creasing in temperature in the beginning of the growing season and increasing in
temperature in the middle end end of the growing season. When fertilizer is not

used, the yield response to temperature is also decreasing in the early part of the

8The k™ data partition is the subset of the full dataset that excludes group , so it includes 80%

of the observations.
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Table 2: Marginal effects at the dataset medians of explanatory variables (soil and

climate characteristics) on yield, with and without fertilizer use.

No Fertilizer Fertilizer
Margin at Margin at
data median data median

Temp months 1-2 (mean, degrees C) -0.1901 -0.3223
(0.2980) (0.8557)
Temp month 3 (mean, degrees C) 1.5149 0.0018
(0.9212) (0.9785)
Temp months 4-5 (mean, degrees C) -1.0965 0.2657
(0.7576) (0.6093)
Precip months 1-2 (tot, mm) -0.6175 0.0757
(0.3646) (0.1979)
Precip month 3 (tot, mm) 0.9611** 0.9594***
(0.3006) (0.2356)
Precip months 4-5 (tot, mm) 0.0467 0.0467
(0.2384) (0.2384)
Soil cation exchange capacity (centimol charge per kg soil) 0.7917 0.4947
(1.3798) (1.0584)
Soil pH (pH determined in soil/water mixture) -0.3414 -0.1026
(0.5553) (0.3582)
Soil clay (share by volume) 0.5675 1.1104*
(0.7726) (0.5665)
Soil silt (share by volume) 0.7183 0.0179
(1.1853) (0.3981)

season and increasing in the middle of the season. However, at the end of the
growing season, the yield response to temperature is negative when fertilizer is
not used. The yield response to early season precipitation is positive when fer-
tilizer is used and negative when it is not. The yield response to middle and late
season precipitation is similar with or without fertilizer use (positive, and larger in
magnitude in the middle of the season than at the end). Yields are more strongly
increasing in soil clay content when fertilizer is used than when it is not. They are
more strongly decreasing in soil pH when fertilizer is not used than when it is.
They are more strongly increasing in soil silt content when fertilizer is not used
than when it is not.

In order to better understand how fertilizer response varies under different
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growing conditions, we predicted the difference between an optimal-fertilizer
yield and a no-fertilizer yield for each trial observation, holding all climate and
soil characteristics to the values observed in the dataset. The predicted fertilizer
response is then graphed non-parametrically over climate and site characteris-
tics (Figure 1). The densities of the climate and site characteristics are depicted
at the bottom of each graph. The graphs show that expected fertilizer response
is roughly U-shaped over average growing season temperature and is increasing
over growing season precipitation. The fertilizer response is positive and increas-
ing, on average, when mean growing season temperature is between 17 and 22
degrees, and decreasing above that. When temperatures reach the high end of the
distribution, above 23 degrees, the fertilizer response is decreasing in temperature.
Expected fertilizer response is decreasing in soil silt content and decreasing over
the majority of the soil pH distribution (between 5.5 and 7), and more variable at
the tails.

Generally, fertilizer is considered a risk-enhancing input with respect to tem-
peratue and precipitation. Using the trial dataset, we compare the coefficient of
variation on yields between fertilized and non-fertilized sites by temperature and
preciptation quantile (Table 3). This conventional wisdom is not supported by
the data, which suggest that there is no clear pattern between yield variability of
fertilized or unfertilized sites and temperature or precipitation (or their combina-

tion).

4.1 Predicting fertilizer response

Using the production function parameters estimated above, we next simulate the
agronomic response to fertilizer across African geographies. We generate a grid-
ded map of soil characteristics, AEZ, and maize planting date for Sub-Saharan
Africa, masking out areas where maize is not grown or where the temperature

and precipitation distributions fall outside of the range used to estimate the fertil-
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Figure 1: Mean predicted fertilizer yield response over total growing season pre-
cipitation (top left), average growing season temperature (top right) soil
pH (bottom left), soil silt content (bottom right).
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izer response.” Then, for each African site, we generate a 200-year long synthetic
climate dataset using each site’s historical climate distribution. Using the planting
date for each site, we create monthly growing season temperature and precipita-
tion variable for each of the 200 growing seasons in the synthetic dataset.

For each site and year in the simulated dataset, we predict the agronomic re-
sponse to fertilizer. Combining years in the synthetic climate dataset, we then

generate a site-specific, probabilistic distribution of fertilizer response. For illus-

9We use Harvest Choice to screen out areas where maize is not grown, and the GAEZ dataset
for maize planting date. We also screen out sites that have low probability of fertilizer elimination
testing based on the criteria used to generate probability weights in the estimation dataset.
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Table 3: Comparison between the coefficient of variation between fertilized and

non-fertilized sites, by temperature and precipitation quantile.

Average Temperature

Q1 Q2 Q3 4 Q5

Q1 No fert 26.27 56.34
Optimal fert 72.54 4849 79.64 4498 6235
Q2 No fert 42.29 41.65 65.06

Optimal fert 79.07 57.78 105.60 47.81 58.89
Total Q3 No fert 46.74 5155 5098 54.09
Precipitation Optimal fert 50.53 107.31 72.89 45.71 36.74
Q4 No fert 58.25 59.82 39.72
Optimal fert 56.10 6138 4396 53.36 5891
Q5 No fert 4437 46.14 2619 39.57 33.28
Optimal fert 37.05 3632 2947 4249 47.28

trative purposes, Figure 2 depicts the cumulative distribution of the fertilizer re-
sponse in 10 randomly selected locations in sub-Saharan Africa. The site locations
are mapped in the left side of the figure. In two of the sites, the fertilizer response
is predicted to be negative for at least some years. In the best site, the fertilizer re-
sponse ranges from 1.5 t/ha in the worst year to 3 t/ha in the best year. In most of
the years and most of the the sites, the fertilizer response ranges between 0.75 and
1.25 t/ha. The distribution of the fertilizer response is different in every site, due
to fixed site differences in soil characteristics, the site-specific climate distribution,

and interactions between the two.

21



Figure 2: The left figure depicts the location of 10 randomly selected sites in Sub-
Saharan Africa. The right figure depicts the cumulative distribution of
yield response to fertilizer over realizations of stochastic temperature

and precipitation conditions for these 10 locations.
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5 Fertilizer Profitability

Next, we turn to analysis of the profitability of fertilizer use. We convert the pre-
dicted yield difference described above into a value cost ratio (VCR) measure us-
ing an assumed fertilizer price and maize price."’ We then analyze profitability,
ex ante, according to properties of the distribution of the stochastic VCR variable

(see Equation 5). For the purposes of this analysis, we assume that a farmer seeks

19We expect local and fertilizer prices to vary across sites due to transportation costs and local
market conditions. For the sake of this profitability analysis, we ignore site- and even year- specific
prices and assume a fertilizer price of $665 per MT and a maize price of $250 per MT.
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at least a 30% return on the fertilizer investment (T=1.3) at least 70% of the time
(P=0.7).

1-F(VCR=T)>P ®)

We then characterize sites in Sub-Saharan Africa by whether the robust prof-
itability criteria specified in Equation 5 are met and explore the implications for
decision makers. For the sake of comparison, we define a “naive” profitability
measure based on what is commonly used in practice — fertilizer use is deemed
profitable if the average yield difference between fertilized and non-fertilized trial
sites in the country is valued at least double the cost of the fertilizer. If trial data are
not available in a given country, we use the average yield difference for trial sites
in the same agro-ecological zone (AEZ). This measure is analogous to an ex post
measure of profitability as commonly applied in the literature. After construct-
ing a profitablility assessment for each site using both the naive and the robust
definitions, we then compare the two assessments.

At the desired profitability incidence of 70%, we find that fertilizer use deemed
profitable by both “naive” and “robust” criteria in the majority of sites in which
maize is grown (Figure 3). In almost 60% of the sites, fertilizer use is profitable
using both “naive” and “robust” criteria. In 5.5% of the sites, fertilizer use is prof-
itable using neither “naive” nor “robust” criteria. In 8.6% of the sites, fertilizer
use would be considered profitable according to “naive”, ex post criteria, but not
according to robust, ex ante criteria. In these cases, characterized by type 2 error,
one might over-predict the returns to fertilizer use if one does not fully consider
stochastic weather realizations. In about 27% of the sites, fertilizer use is con-
sidered profitable according to “robust”, ex ante criteria but not “naive”, ex post
criteria. In these cases, a planner might under-predict the profitability to fertilizer
use with the rule of thumb profitability measure. Because the very recent years
tend to be worse, on average, than the full climate record, the Type 1 classifica-

tion, characterized by under-estimation of fertilizer profitability using the naive
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Figure 3: Comparison of profitability between two different criteria — “naive”,
based on the most recent climate realization in a site, and “robust”, based

on simulation of climated conditions.

Type 1,
underutilize
w/ naive

27.1%)

Always
profitable
(58.8%) Type 2,
overutilize
w/ naive
(8.6%)

Never
profitable
(5.5%)

approach, is more common. 1

We depict the spatial distribution of “robust” and “naive” profitability in Fig-
ure 4. The “never profitable” sites are concentrated in the Democratic Republic
of the Congo. Sites that tend to be profitable according to either the robust or the
naive criteria are found throughout the Sahel, the southern part of Central Africa,
South Africa, and Madagascar. Sites where farmers are likely to over-utilize fertil-
izer based on very recent climate realizations tend to be concentrated in Ethiopia
and around Lake Victoria, while sites where farmers are likely to under-utilize fer-
tilizer if they are influenced by very recent climate realizations are spread through-
out the region and are especially concentrated around Mozambique.

Next, given the difficulty in assessing site-specific prices for both maize and

The implications of shifting trends in the underlying distributions of climatic variables are not
considered in this analysis.
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Figure 4: Map of site level profitability assessment according to the “naive” and
“robust” criteria.
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fertilizer, we consider what ratio between fertilizer and maize prices would be
required in order for fertilizer use to be profitable according to the robust criteria.
We solve for, and then map, the price ratio that ensures VCR > 1.3 in at least 70%
of years (Figure 5). In a few sites fertilizer response is not predicted to be large
enough in enough scenarios that profitability is achievable, no matter what the
ratio between fertilizer and maize prices. These sites are concentrated in Ethiopia
and in Central Africa. These sites give way to others where fertilizer use would
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be profitable only if fertilizer is priced very inexpensively, at less than 5 times the
price of maize. We also highlight sites where fertilizer use would be profitable if
the price ratio were between 5 and 10, which is a more realistic scenario. Finally,
we show where fertilizer use is expected to be profitable even if fertilizer is very
expensive — over 10 times as much as maize. In these sites (colored black), the

profitability of fertilizer use is more robust to high fertilizer or low maize prices.

6 Conclusion

We have proposed a flexible approach to assisting decision makers in assessing
the returns to soil health investments in the face of climate uncertainty and spatial
heterogeneity. Predicted fertilizer response in an agronomic trial setting may not
perfectly correspond with fertilizer responses that farmers will observe on their
fields. However, it is nevertheless informative to explicitly examine the inter-
actions between fertilizer response, climate realizations, and site characteristics.
Our analysis indicates that, in many parts of the sub-continent, profitability is
likely to be sensitive to the criteria by which decision-makers define profitabil-
ity. In particular, by ignoring climate variability and soil characteristics in certain
parts of the region, one could systematically underestimate the probability that a
smallholders” investment in fertilizer won’t pay off. Similarly, by fine-tuning our
understanding of climate-fertilizer interactions, we can better target fertilizer use.
By using the “rule of thumb” decision criteria, which assumes that responses that
are large enough are robust, we would ignore sites characterize by smaller yet
very reliable responses. It is important to better understand these criteria when
calibrating decision support tools or fertilizer promotion programs.

This approach, as a platform, can be strengthened as more data become avail-
able. Additional fertilizer response trials in cool and dry regions would be es-
pecially useful, in order to extend the range of conditions under which fertilizer
profitability can be reasonably predicted. Starting to trace out a continuous fertil-

izer response would also be quite interesting, as fertilizer response per kilogram
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Figure 5: Map of the ratio between fertilizer and maize prices that would be re-
quired in each given site in order for profitability to be considered “ro-
bust.”
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applied is likely to be higher when fertilizer is applied at low quantities than at
the full recommended dose. Understanding the continous fertilizer response will
require a major effort to collect fertilizer dosing data over multiple sites and years.

One feasible expansion involves conditioning the synthetic climate data draw
on underlying trends in the historical dataset, thereby incorporating climate
change trends into the synthetic dataset used to forecast returns to fertilizer use. It
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is also possible to incorporate medium range climate forecasts, such as the ENSO
signal, which is available at the time of planting, in order to help decision mak-
ers refine their predictions of fertilizer profitability in El Nino and La Nina years,

when climatic patterns tend to differ (Korecha and Barnston 2007).
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Table A.1: Selected model variables and parameters for all five dataset partitions.

The parameter estimates depicted for each partition correspond with

a regression that excludes that partition. The R* value shows the in-

sample fit for each regression, and the RMSE shows the “out of sample”

root mean square error of predicted yields for the left-out partition.

K1 (Best) (se) K2 (se) K3 (se) K4 (se) K5 (se)
precip pl -0.260 0532 -0277 0439 -1.044 0.335* -0.382  0.333 -0285 0473
fert 2.155 0.295** 1448 0418* 1.042  0428* 1927 0.410* 1.663 0.318**
claypct x fert 3.030 0.760**  0.555 0.465 0.544 0.392 0.484 0.377 0.566 0.332
precip p2 x fert 0.323 0.276 0.528  0.235* -0.314  0.410 0.037 0208  -0.350  0.188
claypct x claypct -5.526 1.273* -0.897 0.322** -1314 0.278* -0.734 0428 -0.346  0.322
precip p2 x siltpct 0.832 0.362*  0.632 0.367 0.577 0.479 0.628 0.418 1.360  0.432**
claypct x siltpet 0.858 1.720  -0.101 1.221 -1.100 1.027  -3.683 1.604* -0.236  1.253
precip p3 x siltpct -2.797 0.833** -0.945 0526  -1.133  0.443* -1.512 0.541* -0.440 0.567
temp p3 x precip p3 -0.881 0.434* -0613 0450 -0.726  0.680  -0.931 0.403* -0.763 0.378*
temp p1 x precip p3 0.675 0.800 2127  0.616** 1716  0.819* 1596  0.694*  0.540 0.850
temp p1l x temp pl 2.050 1.700  -0.485 1.277 0.106 1.706
soilph x poordrain 3.172 1.371*  -0.022  1.966 2.325 2805 -0230 1.225 1.483 1.206
precip p3 x poordrain 3.302 1.350* 3.919 2.978 2.232 1.300 2.402 1.300
temp p1 x soilcec -0.916 1.346 1.279 1.163  -0.520  1.461 -0.618 1.141 2.226 1.483
precip p3 x claypct 1.051 0.835  -0.221 0.162  -0.243  0.334 0.204 0.303
precip p1 x poordrain -0.291 0.603  -0.262  0.696 0.713 0.854  -0439  0.705 0.303 0.555
soilph x soilph 0.635 0.261*  0.309 0.166  -0.131 0.219 0.202 0.196 0.304 0.193
soilph x fert 0.537 0.597 1.527 0.850 0.578 0.484
temp p1 x fert -1.229 0.641 1.438 0.689* 0.201 0.855
claypct -2.025 0.858* 1924  0.821* 1543  0.765*  0.520 0.820  -0.654  0.653
soilph x siltpct -0.551 0.451 -0.363  0.384  -0943 0479* -0.437  0.611 -1.075  0.635
temp p1 x soilph -0.819 0722 -1.120 0.778 0.040 0986  -1.361 0.647* -0.371 0.722
precip p3 x soilcec 0.802 0.584 1.030 0.683 0.763 0.628 1.123 0.704 0.340 0.608
claypct x poordrain -10.349 5288  -7.322 2452* 6479 4135 < -3919 3192  -1.945 4520
soilcec x claypct 3.204 1.559*  0.502 0.879 0.209 0.989 4.008  1.567*  1.327 1.126
temp p2 x temp p2 1.333 1792 -1.027 2108 -2984 2177 -1177  1.696  -0.879 1.286
precip pl x claypct 0.217 0.574 -0.455 0.312 0.476 0.277 0.688 0.341*
precip pl x precip p3 -0.213 0.187  -0.151 0.175 0.521 0.233*
siltpet x fert -0.545 1.002  -1.275  0.677 3.950 2.350 -1.496  0.840
poordrain 3.172 1.255* 4.593 3.056 2,613  1.006**  0.992 1.919
temp p2 x siltpct -2.522 1.141* -2.703 1.283* -0.702 1475 -4155 1.780* 3.584  1.819*
temp p3 x siltpct 0.757 0.831 1.416 0.872  -1.061 0.898 1.099 1.257  -1.353 1.052
siltpet -0.044 1.015 -5.017  2.140*  -0.053  0.698 3.103  0.760**
temp p3 x poordrain -3.877 0.982*  -3406 1.064*™ -0.367 1489  -1.346 1467  -1.233 1.140
precip p2 x soilcec -1.238 0.449* -0.840 0.331* -0299 0360 -0.850 0.355* -1.193 0.385**
temp p2 x poordrain 4.009 1.590* -1.707 2079  -1.598 = 2.594 0.884 2.099 0.530 1.805

(continued on next page)
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(continuation of Table A.1)

K1 (Best) (se) K2 (se) K3 (se) K4 (se) K5 (se)

soilcec x poordrain 4.229 1.466™  1.547 2.388 1.478 2.930 4265  1.632**  0.605 1.632
siltpct x poordrain -3.224 1.630*  1.530 1.164 0.710 2,638  -2300  1.964 1.781 3.746
precip pl x fert 0.643 0.557 0.665 0.419 1.109  0.347*  0.726 0.371 1191  0.464*
soilcec x soilph -0.571 0.721 0.191 0.650 1.608  0.563** 1318  0.533*  0.519 0.622
precip p2 x soilph 0.348 0.300 0.636  0.256*  0.245 0.292 0.371 0.310 0.178 0.256
temp p2 x precip p2 0.173 0776 ~ -0405 0714  -0.723  0.722 0.455 0.695 -0964  0.808
temp p3 x fert 0.389 1.178 -0.314 1338 -0410 0.316 1.624  0.739*
soilph -0.870 0.547 0.866  0.280* -1.333  0.995 0.621 0368  -0.125  0.498
temp p2 -0.748 1.170 0.698 0.979 0.165 1.634 0.681 0.856 1.306 1.271
temp p2 x soilph -0.164 0.759 1.214 1.022 0.423 1.115 1.790  0.695** 1773 1.024
siltpct x siltpct 0.607 0.684  -0.489  0.543 0.466 0.881 0.600 0750  -1.107  0.617
precip p1 x siltpct 0.579 0.435 0.166 0.523 0.420 0494  -0740 0461
precip p2 x precip p2 -0.155 0.164 -0.149  0.183 -0.116  0.165
temp p3 x precip p2 0.896 0.609 0.242 0.471 1254  0.522* 0953 0.493 0.554 0.637
precip p3 x precip p3 0.104 0.115 0.063 0.076 0.101 0110  -0.087  0.174 0.197  0.086*
precip p3 -0.181 0.252 0.090 0.261 0.367 0.529  -0.099  0.269 0.354 0.241
temp pl x temp p2 -4.489 3.404 1.118 3.029 2.133 3.265 0.944 1.351 1.360 1.089
temp p1 x precip p2 -0.969 0645 -0.037 0.805 -0.446  0.802 -1.011  0.625 0.727 0.806
temp p2 x precip pl 0.854 1011 -0171  0.629 0.987 1.113 1.288 0.673 0.935 0.896
temp p1 x precip pl -0.541 0.662 0.494 0.535  -0.547  0.841 -0.464 0581  -0453  0.531
temp p3 x temp p3 0.030 0217  -0257 0424 -1.096 0567 -0.534  0.553 0.156 0.634
soilph x claypct -0.185 0.607 0.625 0487  -0628 0718 -0.804 0794  -0457  0.668
precip p2 x claypct 0.470 0.444 0.511  0.228*  0.121 0.231 0.608  0.262* 0418 0.227
precip p1 x precip pl 0.085 0.112 -0.110  0.115 -0.011 0.158 0.162 0.147 0.125 0.163
temp p2 x precip p3 -0.564 0.696  -1304 0.632* -1.063 0723  -0.638  0.700 0.321 0.841
precip pl x soilph 0.218 0.246  -0.140  0.257 0.154 0.328 0.534 0.310 0.846  0.334*
soilcec x soilcec -0.854 0775  -1554 0953  -1.923 0.675** -2980 0.788* -1.186  0.580*
temp p3 x claypct 0.206 1281  -0.795  0.577 0.788 0.605 -0.137  0.846 -0.279  0.591
soilcec 1.833 1213 -0.163  0.874 5.079  2.082*  0.958 0.921

soilcec x fert -1.440 1.201 1.021 0.597  -4516  2.005* -0.750  0.717
temp p1 x siltpct 1.327 1.420 0.724 1.083 0.748 1.522 1916 1306  -1.287  1.539
precip p2 0.300 0.375 0.111 0.252 1.083  0454* 0634 0247 0717  0.351%
precip p2 x precip p3 -0.176 0279  -0073 0169 -0214 0271 -0400 0207 -0209  0.221
temp p3 x soilcec 0.491 0.790  -0232  0.807 0.240 0759  -0912  0.808 1.164 0.830
temp p2 x claypct 0.398 1.663 5613  1.891** -1253  1.510 4249  1.999* 3464  1.402*
temp p3 0.659 1169  -0.172  0.450 0.284 1.291 -1.578  0.701*
temp p2 x fert 0.463 1.394 -0.633  1.673 -2267 1432
temp p1 x poordrain -0.393 1.385 3.906 2.053 1.013 1.596

precip p2 x poordrain -0.139 0.583 -0.721 0.484 -0.573 0.440

temp p3 x precip pl -0.110 0.505 -0431 0508 -0.717 0401  -1.026  0.627
precip p3 x fert 0.192 0333  -0361  0.607 0.391 0.385

temp p1 x temp p3 -0.744  1.095  -3.032 1.160* -1496 1202  -1.940  0.936*
precip pl x precip p2 0467 0187 -0.118  0.187 0.050 0215 -0309  0.306
fert x poordrain 0.955 0.868  -2.314  1.609 -0.552  0.860
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(continuation of Table A.1)

K1 (Best) (se) K2 (se) K3 (se) K4 (se) K5 (se)
temp p2 x temp p3 0.703 1.640 3965  1.791*  1.368 1.951 0.654 1.694
soilcec x siltpct 1.802 1.593 1.648 1.455 1.339 1.284 2.533 1.013*
precip p1 x soilcec 0.703 0.344*  -0.513 0.532 -0.023 0.478 -0.553 0.519
precip p3 x soilph -0.551 0.287 -0413 0.377 -0.470 0.315 0.648 0.416
temp p1 x claypct -3.678  1.220**  -0.459 1.081 -2.244  0907*  -0.642 0.778
-1.112 0.804 -2.055  0.925*  -0.906 0.677 0.793 0.891
temp p3 x soilph -0.158 0.350 -0.512 0.572 -0.836 0.553
temp p2 x soilcec -1.173 1.707 0.782 1.534 0.552 1.625 -4.670  1.851*
3.259 0.513* 4216 0.643* 5128 0.688**  4.065 0.647** 3.063  0.469**
0.347 0.380 0.370 0.370 0.381
77 78 85 75 81

*p <0.05* p<0.01

Coefficient (se)
Precip months 1-2 (tot, mm) -0.457 0.316
Fertilized plot (dummy) 1.543 0.363**
claypct x fert 0.550 0.496
precip p2 x fert 0.066 0.237
claypct x claypct -0.789 0.275**
precip p2 x siltpct 0.673 0.320*
claypct x siltpct -1.427 0.840
precip p3 x siltpet -1.276 0.441**
temp p3 x precip p3 -0.634 0.390
temp p1 x precip p3 1.725 0.621**
temp p1 x temp p1l -0.570 1.316
soilph x poordrain 2.892 1.232*
precip p3 x poordrain 1.747 1.303
temp p1 x soilcec -0.939 0.913
precip p3 x claypct 0.159 0.173
precip pl x poordrain 0.495 0.546
soilph x soilph 0.113 0.157
soilph x fert 0.197 0.548
temp p1 x fert -0.145 0.685
Soil clay (share by volume) 0.720 0.800
soilph x siltpct -0.042 0.392
temp p1 x soilph 0.542 0.611
precip p3 x soilcec 0.647 0.507
claypct x poordrain -8.575 3.481*
soilcec x claypct 1.731 0.717*
temp p2 x temp p2 -0.195 1.377
precip pl x claypct 0.063 0.331
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(continuation of Table A.2)

Coefficient (se)
precip p1l x precip p3 0.116 0.155
siltpct x fert -0.527 1.202
Poor drainage (dummy) 2.073 0.912*
temp p2 x siltpct -0.536 0.642
temp p3 x siltpct 0.472 0.772
Soil silt (share by volume) 0.366 1.232
temp p3 x poordrain -0.834 1.017
precip p2 x soilcec -0.737 0.268**
temp p2 x poordrain -1.450 2.087
soilcec x poordrain 1.336 1.126
siltpct x poordrain -1.549 1.425
precip p1 x fert 0.709 0.341*
soilcec x soilph 0.705 0.441
precip p2 x soilph 0.316 0.225
temp p2 x precip p2 -0.525 0.683
temp p3 x fert 1.036 0.597
Soil pH (pH determined in soil/water mixture) 0.093 0.477
Temp month 3 (mean, degrees C) 0.795 0.883
temp p2 x soilph -0.287 0.626
siltpet x siltpct 0.843 0.490
precip pl x siltpct 0.130 0.382
precip p2 x precip p2 -0.089 0.146
temp p3 x precip p2 1.233 0.508*
precip p3 x precip p3 0.097 0.091
Precip months 4-5 (tot, mm) 0.215 0.267
temp p1 x temp p2 0.412 2.609
temp p1 x precip p2 -0.713 0.713
temp p2 x precip pl 0.909 0.771
temp p1 x precip pl 0.020 0.510
temp p3 x temp p3 -0.261 0.212
soilph x claypct -0.593 0.485
precip p2 x claypct 0.340 0.224
precip pl x precip pl 0.084 0.117
temp p2 x precip p3 -1.366 0.624*
precip p1 x soilph 0.166 0.227
soilcec x soilcec -1.135 0.320**
temp p3 x claypct 0.224 0.453
Soil cation exchange capacity (centimol charge per kg soil) 0.698 1.082
soilcec x fert -0.445 1.093
temp p1 x siltpct 0.380 0.967
Precip month 3 (tot, mm) 0.697 0.357
precip p2 x precip p3 -0.338 0.243
temp p3 x soilcec -0.141 0.595
temp p2 x claypct 0.416 0.949
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(continuation of Table A.2)

Coefficient (se)
Temp months 4-5 (mean, degrees C) -0.871 0.667
temp p2 x fert -1.071 1.057
temp p1l x poordrain 0.011 1.538
precip p2 x poordrain -0.606 0.451
temp p3 x precip pl -0.808 0.451

* p < 0.05; ** p < 0.01
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