ESTIMATING RISK PREFERENCES IN THE PRESENCE OF BIFURCATED WEALTH DYNAMICS:

DO WE MISATTRIBUTE DYNAMIC RISK RESPONSES TO STATIC RISK AVERSION?

Travis J. Lybbert
UC Davis
Ag. & Resource Economics
One Shields Ave
Davis, CA 95616
(530) 554 1393
tlybbert@ucdavis.edu

David R. Just
Cornell University

Christopher B. Barrett
Cornell University

October 2010
ABSTRACT

Estimating risk preferences is tricky because controlling for confounding factors is difficult. Omitting or imperfectly controlling for these factors can attribute too much observable behavior to risk aversion and bias estimated preferences. Agents often modify risky decisions in response to dynamic wealth or asset thresholds, where they exist. Ignoring this dynamic risk response introduces an attribution bias in static estimates of risk aversion. We demonstrate this pitfall using a simple model and a Monte Carlo simulation to explore the implications of this problem for empirical estimation. Joint estimation of risk preferences and wealth dynamics may remedy the problem, but can be empirically challenging.

Keywords: Risk, uncertainty, wealth dynamics, risk aversion, risk preference estimation, poverty.

JEL Code: D81, O12, D90
ESTIMATING RISK PREFERENCES IN THE PRESENCE OF BIFURCATED WEALTH DYNAMICS:

DO WE MISATTRIBUTE DYNAMIC RISK RESPONSES TO STATIC RISK AVERSION?

1. **INTRODUCTION**

People often take greater risks when facing real prospects of unemployment, hunger, home foreclosure or other imminent perils that they might avoid with a stroke of manufactured good fortune. To invoke a simple image, even a cautious person will jump from a burning building if they believe themselves doomed otherwise. Such an induced risk response is evident in risky sex work in Kenya (Robinson and Yeh, 2008), illegal migration and consensual participation in human trafficking (Kristof and WuDunn, 2009), and skewness seeking in lottery participation (Yew Kwang, 1965), at the horse track (Golec and Tamarkin, 1998), and among mutual fund managers who gamble with riskier fourth quarter portfolios in order to catch the market or make “best fund” lists (Chevalier and Ellison, 1997). In making risky choices, real people seem to factor in how the outcome might change the path dynamic on which they find themselves. To date, however, economists have largely overlooked the effect of background path dynamics on choice under uncertainty. The long tradition of estimating risk preferences based on the moments of return distributions to represent choice-conditioned outcomes considers only the direct payoffs to a risky choice, not the longer-term consequences that arise due to known, nonlinear path dynamics.

We illustrate this fairly general problem using the example of non-linear wealth dynamics associated with poverty traps that a growing literature suggests exist in at least some developing economies (Adato, et al., 2006, Azariadis and Stachurski, 2005, Barrett, et al., 2006, Bowles, et al., 2006, Carter and Barrett, 2006, Dasgupta, 1997, Hoddinott, 2006, Lybbert, et al., 2004, Vargas-Hill, 2009). As the empirical evidence grows that there often exist threshold effects in low-income economies where risk issues are especially salient, economists must consider the consequences of such contexts for risk preference estimation. When agents recognize thresholds in underlying wealth dynamics, their valuation of risk responds in part to the underlying dynamics they perceive; risk response is not solely a function of the level of risk aversion that characterize static preferences (Lybbert and Barrett, 2007, Lybbert and Barrett, forthcoming). Ignoring this dynamic risk response thus introduces an attribution bias in static estimates of risk.
aversion, and dynamic wealth forces can make it very difficult empirically to ferret out the
difference between reactions to dynamic wealth changes and risk preferences.

The state dependence of asset dynamics is central to our argument. The microeconomics
of development literature routinely finds that asset accumulation rates can vary
nonmonotonically with initial asset stocks and, correspondingly, that shocks can have permanent.
Consider human capital accumulation in children, for example. Shocks due to natural disasters
can have permanent negative impacts on health (Alderman, et al., 2006, Jensen, 2000, Paxson
and Schady, 2005) (Jensen 2000; Paxson and Schady 2005), education (Ferreira and Schady,
2009) and productivity (Case and Paxson, 2008, Currie and Thomas, 1999), suggesting that the
returns from investing in children are path dependent. Investing too little in a child may lead to
negative returns if it hampers her physical, cognitive or academic development, but investing
enough to nurture the child’s development can generate significant positive returns (e.g., future
wages or remittances). Evidence that parents in poor countries often invest in children in ways
that allows them to specialize (Emerson and Souza, 2008, Horowitz and Wang, 2004) suggests
an awareness of seemingly non-linear returns to human capital accumulation. In such a setting,
investment patterns are likely driven by risk and time preferences as well as parents’ perceptions
of these dynamic forces; ignoring the latter would lead to misleading estimates of the former.

Our exploration of potential risk responses induced by non-linear wealth dynamics and
associated implications for empirical preference estimation is distinct from seemingly related
strands of the finance literature. Aside from clear differences stemming from our focus on
poverty dynamics rather asset pricing, several distinctions are worth highlighting. Prior work in
finance has examined issues of dynamic risk in terms of serial correlation in investment returns
(Merton, 1969) or more generally when the return on investment changes stochastically over
time (for a recent review see Munk and Sorensen, 2007). However, while this literature considers
choices between investments with returns that change over time, the returns are generally
independent of individual wealth or the size of investment. Some have recognized the impact of
investment size in determining the return on investment in the management of mutual funds
(Indro, et al., 1999) or the influence of firm size in determining the return on research and
development expenditures (Cohen and Klepper, 1996). In these cases, investment decisions
were either assumed to maximize expected profits – and hence risk preferences did not play a
direct role in investment – or the investment decisions were treated as exogenous. In contrast to
this treatment of dynamic risk in the finance literature, we explore the risk implications that arise when individuals face systematic background currents in personal wealth that influence their risky choices. While Foster and Hart (2009) share a similar concern about dynamic risk dimensions in their recent derivation of a theoretical measure of riskiness based on the probability of bankruptcy, they do not address the relationship between wealth dynamics and risk taking and say nothing about the empirical implications of such a relationship, which is the void we aim to fill. Lastly, the notion of time-varying risk preferences is captured in several recent models in macroeconomics and finance. The proposed causes of these time-varying preferences, including habit-formation preferences (Campbell and Cochrane, 1999) and consumption commitments (Chetty and Szeidl, 2007), are, however, completely unrelated to the dynamic risk response that may causes risk preferences to (appear to) change over time in our formulation.

We first construct a simple analytical model to illustrate how a dynamic risk response can bias estimates of risk preferences. We then turn to a Monte Carlo simulation to explore the implications of this problem for empirical estimation. Comparison of the resulting risk preference estimates indicates the substantial misattribution bias that can affect such estimates when dynamic risk responses are ignored. While joint estimation of risk preferences and the underlying wealth recursion function can dodge this attribution bias, risk preference estimates are sensitive to the fit of the estimated recursion function.

2. ANALYTICAL MODEL

The potential to misattribute a dynamic risk response to an innate risk preference can be easily demonstrated with a stylized analytical model. In this model, risk averse agents who face a known wealth dynamic are offered a gamble in the first period and then live forever with the consequences of the gamble, as shaped by the underlying wealth dynamics. Agents’ valuation of the gamble is a function of both their innate aversion to risk and their initial wealth relative to these dynamics. If we naïvely ignore agents’ dynamic risk response near bifurcating wealth thresholds, risk aversion estimates may be severely biased due to misattribution.

1 There is a growing microeconomic literature that seeks to test these models empirically, which generally finds weak or very limited support for these models of time-varying risk preferences. For an example and a review of this literature see Brunnemeier and Nagel (2008).
Suppose that a representative agent’s contemporaneous utility is given by the constant relative risk aversion function

\[u(w) = \frac{w^{1-R}}{1-R} \]

where \(R \) is the coefficient of relative risk aversion and \(w \) is the agent’s wealth. Suppose that the wealth recursion is characterized by a threshold \(w^0 \) above which expected wealth is static and below which wealth steadily falls in each subsequent period:

\[w_{t+1} = T(w_t) \equiv \begin{cases} \varphi w_t, & \text{if } w_t < w^0 \\ w_t, & \text{if } w_t \geq w^0, \quad \varphi \in (0,1) \end{cases} \]

Provided that agents perceive this recursion, their infinite horizon intertemporal utility is given by:

\[U_t(w_t, T(w_t), T(w_{t+1}), \ldots) = \begin{cases} \frac{u(w_t)}{1-\delta \varphi^{1-R}}, & \text{if } w_t < w^0 \\ \frac{u(w_t)}{1-\delta}, & \text{if } w_t \geq w^0 \end{cases} \]

where \(\delta \in (0,1) \) is the discount factor. Given the simple recursion function in (2), the dynamic erosion of wealth below \(w^0 \) by the depreciation parameter \(\varphi \) (adjusted for the diminishing marginal utility of wealth implied by \(1-R \)) simply raises the effective discount rate.

Given this setup, suppose we offer agents in this model a gamble \((z, \rho; -z, 1-\rho)\), which pays out \(z \) with probability \(\rho \). Agents’ certainty equivalent \((C_i)\) of this gamble depends on their wealth relative to the recursion function in (2) and to the size of \(z \) according to:

\[U_t(w_t + C_i, T(w_t + C_i), T(w_{t+1} + C_i), \ldots) = EU_t\left(w_t + \tilde{z}, T(w_t + \tilde{z}), T(w_{t+1} + \tilde{z}), \ldots | z, \rho \right) \]

where \(\tilde{z} \) is the random payout of the gamble. Four distinct wealth cohorts \((- -, -+, +++)\) emerge with the implied certainty equivalent for each wealth cohort given by:
\[C_i^{--} = C_i^{++} = \left[\rho (w_{it} + z)^{1-R} + (1 - \rho) (w_{it} - z)^{1-R} \right]^{R-1} - w_{it} \]
\[C_i^{-} = \left[\frac{\rho (w_{it} + z)^{1-R} (1 - \delta \varphi^{1-R})}{1 - \delta} + (1 - \rho) (w_{it} - z)^{1-R} \right]^{R-1} - w_{it} \]
\[C_i^{+} = \left[\rho (w_{it} + z)^{1-R} (1 - \rho) \left(\frac{w_{it} - z)^{1-R} (1 - \delta)}{1 - \delta \varphi^{1-R}} \right) \right]^{R-1} - w_{it} \]

The poorest and richest cohorts value the gamble similarly because \(z \) is not big enough to change their position relative to \(w^0 \). The valuation of the – and + cohorts reflects their potential to cross this threshold by winning or losing \(z \), respectively.

Panel (a) of figure 1 depicts the certainty equivalents for these wealth cohorts relative to a benchmark static certainty equivalent function with linear wealth dynamics (i.e., \(\varphi = 1 \)). Those with wealth just below the threshold (\(w^0 = 5 \)) value the gamble more because a lucky draw can push them to more favorable dynamic path, while those just above the threshold value it substantially less because the gamble threatens their otherwise safe wealth position. The coefficients of relative risk aversion \(R \) implied by the dynamic certainty equivalents (figure 1(b)) demonstrate the misattribution bias. If we naïvely estimate \(R \) using dynamic certainty equivalents but ignore agents’ behavioral response to the wealth recursion, we misattribute all the variation in these certainty equivalents to the curvature of the contemporaneous utility function.\(^2\) The direction of this bias depends on agents’ location relative to \(w^0 \): Naïve estimation wildly exaggerates the degree of risk aversion of those playing it safe just above this threshold and understates the risk aversion of those going for broke just below it.

A common approach to estimating risk preferences involves pooling agents and estimating an average risk preference for a group or sub-group of individuals. Given a uniform wealth distribution, the average degree of risk aversion in this simple analytical model is \(\bar{R} = 5.8 \), nearly twice the actual degree of risk aversion of \(R = 3 \). While the direction of the bias in \(\bar{R} \) depends on the parameterization of the model and the distribution of agents across the wealth spectrum (and especially near \(w^0 \)), the possibility of misattribution bias in estimated risk preferences is obvious. The average coefficients of risk aversion by wealth cohort are

\(^2\) For a related perspective on the potential problems of attributing this curvature exclusively to risk aversion see Just and Peterson (2003).
\(\bar{R}^- = \bar{R}^+ = 3, \bar{R}^* = 2.3, \) and \(\bar{R}^* = 16.9. \) With a sufficiently discerning sample splitting technique (e.g., Hansen, 2000), we might be able to define these cohorts and estimate these cohort averages, but these still entangle a dynamic risk response with static risk aversion. To dodge this misattribution pitfall one must control properly for the structure of the underlying dynamics and the risk response that dynamic induces.

3. Monte Carlo Simulation

Building on the simple analytical model above, we construct a simulation model to explore the joint estimation of risk preferences and wealth dynamics. As before, individuals in this model are offered the possibility of investing their wealth in a one-time risky investment. They can invest any portion of their wealth in this investment and all face a wealth recursion function after the stochastic investment outcome is realized. We use this model to generate decision data that we then use to demonstrate the pitfalls in risk preference estimation introduced by bifurcated wealth dynamics. We propose two naïve estimation approaches that ignore underlying wealth dynamics and two informed estimation approaches that explicitly account for these dynamics. We compare estimates from these approaches to illustrate misattribution bias.

In contrast to the simple piecewise-linear recursion function in (2), the wealth dynamic in this simulation is characterized by a recursion function of the form

\[
(6) \quad w_{t+1} = \bar{T}(w_t) \equiv \kappa \alpha \frac{1}{1 + e^{-\nu(w_t - \gamma)}} + (1 - \alpha) w_t + \beta + \varepsilon_t,
\]

where \(w_t \) is wealth in period \(t \), \(\varepsilon_t \sim \text{i.i.d.} \ N(0, \sigma^2_\varepsilon) \), and \(\kappa, \alpha, \beta, \nu \) and \(\gamma \) are shape parameters, with \(\alpha \in [0,1] \), and all other parameters positive. The first term is a standard logistic function, the curvature of which depends on the \(\nu \) and \(\gamma \) parameters, while the second term is obviously linear in \(w \). Thus the parameter \(\alpha \) measures the degree of nonlinearity in the wealth recursion function, with \(\alpha = 0 \) corresponding to linear expected wealth growth of \(\beta \), a random walk with drift process. When \(\alpha = \beta = 0 \), wealth follows a simple random walk process. The \(\kappa \) parameter scales the logistic component of the function so that there may or may not be multiple equilibria in the
expected path dynamics. This is the simplest general functional form that allows for both linear and nonlinear, unique and multiple equilibria in the underlying path dynamics.

Faced with this known wealth dynamic individuals have the opportunity in the first period to purchase a risky asset with an instantaneously realized return. Each individual decides how much to invest in this asset by solving:

\[
\max_{z \in [0,m_i]} \sum_{t=1}^{L} \delta^t E u \left(\tilde{T}^t \left(w_i + z(s-1) \right) \right),
\]

where \(\tilde{T}^t(\cdot) \) indicates the wealth recursion function \(\tilde{T}(\cdot) \) has been applied to its argument \(t \) times in iteration, \(z \) is the amount of wealth invested in the risky asset, the purchase price of the asset is normalized to 1, and \(s \sim N \left(\mu_s, \sigma_s^2 \right) \) is the per unit gross return on the risky asset.

Parameters are the same across all individuals. The only source of cross-sectional variation is initial wealth.

We draw a sample of \(N \) initial wealth observations from a uniform distribution. For each of these \(i=1, \ldots, N \) draws, the utility maximizing \(z_i \) is determined by using a grid search over the possible values between 0 and \(w_i \). For each value in the grid, a sample of \(M \) draws of \(s \) is used to calculate the expected utility. The \(z_i \) yielding the highest expected utility is then recorded as the optimal choice for that observation. Next, the wealth dynamic is applied to the resulting wealth \(L \) times in order to generate a wealth time series of \(L \) periods following the risky decision. Thus, the simulation generates an initial wealth, an optimal investment decision and a resulting wealth time series for each of the \(N \) observations. We then use these generated data to estimate behavioral parameters using naïve and informed approaches.

The first naïve estimation approach assumes that investment decisions are only based on instantaneous utility (i.e., ignores any dynamic risk response) and that individuals share a common coefficient of relative risk aversion. This implies estimation of a unique \(R \) that minimizes the sum of squared first order conditions:

\[\max_{z \in [0,m_i]} \sum_{t=1}^{L} \delta^t E \left(\tilde{T}^t \left(w_i + z(s-1) \right) \right)^{-R}. \]

For an interior solution, the first order condition to this problem can be written as:

\[\frac{\partial}{\partial z} \max_{z \in [0,m_i]} \sum_{t=1}^{L} \delta^t E \left(\tilde{T}^t \left(w_i + z(s-1) \right) \right)^{-R} = 0. \]
The second naïve estimation approach also disallows any dynamic risk response, but allows for heterogenous coefficients of relative risk aversion such that R_i is based on w_{ii} and z_i as follows:

$$
\max_{z_i \in [0, m_i]} \frac{E \left[w_{ii} + z_i (s - 1) \right]}{1 - R_i}. $$

In contrast, the informed estimation approaches explicitly control for any dynamic risk response by extracting the wealth recursion function before estimating risk preferences. The first informed estimation approach assumes we know the true functional form of this function and uses the generated wealth panel data to estimate its parameters. With this estimated recursion function, this approach then uses a grid search over R and δ to determine the parameters that solve

$$
\min R, \delta \sum_{i=1}^{N} \left[z_i - \arg \max_{z_i \in [0, m_i]} \sum_{i=1}^{L} \delta^i E \left[\tilde{T}(w_{ii} + z_i(s - 1)) \right] \right]^2.
$$

The second informed approach is nearly identical to the first, but instead assumes that we do not know the functional form of the wealth recursion and must approximate it using a 6th order polynomial (for other polynomial approximations see Antman and McKenzie, 2007, Barrett, et al., 2006).

The simulations we report are based on a $L = 5$ decision problem with $N = 500$ observations and $M = 100$ draws. Initial wealth is drawn from the distribution $w_i \sim U(0,10)$. The parameters of the wealth dynamic function are $\kappa = 5, \alpha = 0.75, \beta = 0.5, \nu = 2.5, \gamma = 3, \sigma^2 = 0.01$. These parameters imply an unstable equilibrium at $w \approx 3$ (analogous to w^0 in the
analytical model above). The risky asset has return \(\mu_s = 1.1 \) and variance \(\sigma_s^2 = 0.25 \). The discount factor is set to \(\delta = 0.95 \), and relative risk aversion is \(R = 3 \).

The results of the four estimation approaches using this generated data are shown in table 1. Columns 1 and 2 illustrate the misattribution bias inherent in the naïve estimation approaches. With a common \(R \) this bias is severe. Although the mean of the individual estimates of \(R \) is not statistically different than the true value of \(R \), misattribution bias is again severe near the unstable threshold. As shown in figure 2, these individual \(R \)’s are significantly underestimated wherever initial wealth given the (ignored) recursion implies expected wealth erosion in the next period. These are also underestimated when expected wealth accumulation is positive and the risk of falling below the threshold is trivial. As in figure 1, they are overestimated when individuals are close enough to the threshold that the gamble could easily push them below it.\(^6\)

The informed estimation results in column 3 have been stripped of the dynamic risk response and are consequently much closer to the true value of \(R=3 \). This approach assumes we know the true form of the recursion function, which enables us to estimate the function very precisely. Indeed, this estimated recursion function is graphically indistinguishable from the true function in figure 2. As a result, we can effectively extract the dynamic risk response and produce point estimates of \(R \) and \(\delta \) that are close to their true values.\(^7\) Unfortunately, implementing this remedy in practice may be wrought with complications. On such complication emerges from our second informed estimation approach that approximates the recursion function. The estimated polynomial approximation to the recursion function is shown in figure 3. Although the approximation appears to be close to the true recursion, it is not perfect and the estimates in column 4 seem quite sensitive to even these minor imperfections. The way the recursion function enters the optimization problem in (10) ensures that small imperfections in
approximation are quickly magnified and can limit our ability to accurately extract the dynamic risk response. In effect, small changes in the dynamic function create a festering undercurrent for wealth that over time looms large in wealth and consumption decisions through compounding. Small errors in the estimated recursion function can have large impacts on subsequent estimation of risk aversion parameters, which generally enter utility functions in an exponential, rather than multiplicative or additive, form. Errors near critical thresholds can especially hamper risk aversion estimates (recall figure 2).

Semi- or non-parametric estimation of the wealth recursion (e.g., Lybbert, et al., 2004) could improve the fit of the recursion function and thereby the estimates of R and δ, but further complications lurk. The possibility of heterogeneous (e.g., ability-conditioned) wealth dynamics could severely complicate the estimation of the recursion function (Antman and McKenzie, 2007, Santos and Barrett, 2006). Lastly, if the underlying dynamic forces in a system are particularly strong relative to stochastic shocks, a distinctly bi-modal wealth distribution can emerge with relatively few data points near any unstable equilibria. This could complicate the estimation of the recursion function near critical thresholds where dynamic risk responses may be strongest.8

4. Conclusion

Estimating risk preferences is notoriously tricky because controlling for confounding factors is difficult. Our objective in this paper has been to showcase non-linear underlying path dynamics as an overlooked, but potentially important, confounding factor. When thresholds in these underlying dynamics are sufficiently distinct that they are apparent to agents in the system, thresholds may induce a dynamic risk response. Near such a threshold, part of an agent’s valuation of risk is a response to the underlying dynamics she faces or perceives, rather than being simply a function of her level of risk aversion. Ignoring this dynamic risk response thus introduces an attribution bias in static estimates of risk aversion. We illustrate this general problem using the case of bifurcated wealth dynamics associated with poverty traps.

8 We have explored the effects of this complication on the estimation of the behavioral parameters via simulation by burning-in the recursion function several periods before generating the data used to estimate the parameters in the model. This quickly squeezes out information near bifurcation thresholds, making it difficult to get decent preference estimates even when explicitly controlling for the full dynamic structure.
Does the misattribution of dynamic risk responses to static risk aversion really matter? As a theoretical matter, this seems to be an important distinction and speaks to the importance of balancing preferences and structure. Indeed, the observation that implicit wealth dynamics might directly shape preferences appears in Friedman and Savage’s (1948) classic work. Moreover, dynamic misattribution bias seems relevant empirically. In particular, this potential source of bias in estimates of risk aversion highlights the importance of careful consideration and estimation of the structural features of behavioral models of decision making. As a policy matter in the poverty traps setting we use to illustrate the problem, since both the magnitude and direction of dynamic risk responses can change dramatically as wealth or assets change, misattribution could render the simulation of policies that create infra-marginal welfare impacts especially inaccurate. Even if a given policy changes wealth or assets marginally or not at all, our understanding of its effects might be hampered by misattribution bias in average estimates of risk aversion.

Understanding non-linear dynamics is an important frontier of economic research, often with clear implications for the design and implementation of policy in areas as distinct as poverty reduction, environmental management, storable commodity markets and business cycles. It seems reasonable that in many of these contexts individuals and households appreciated the dynamic forces that shape the path long before economists understand them. In recognition of our late arrival on the scene, we should at least acknowledge the possibility of behavioral wrinkles induced by these dynamics.
References

Table 1 Results for Static and Informed Estimation Approaches

<table>
<thead>
<tr>
<th></th>
<th>True Parameters</th>
<th>Naïve Estimation</th>
<th>Informed Estimation</th>
<th>Approximation of Wealth Recursion Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>Common R</td>
<td>Individual R</td>
<td>True Wealth Recursion Form</td>
<td></td>
</tr>
<tr>
<td>Relative Risk Aversion (R)</td>
<td>3.00</td>
<td>13.18 (0.000)</td>
<td>1.91 (0.486)</td>
<td>3.18</td>
</tr>
<tr>
<td>Discount Factor (δ)</td>
<td>0.95</td>
<td>-</td>
<td>-</td>
<td>0.85</td>
</tr>
</tbody>
</table>

a This is the mean of individual estimates with standard deviation is 1.56.

b P-values in parentheses of test that estimates equal true parameters (based on standard errors generated by 1000 bootstrapped samples).

c The estimated parameters in the true wealth dynamic functional form (equation (6)) are so precisely-estimated as to be indistinguishable from the true parameter values at two decimal places.

d This estimated approximation is given by 6th order polynomial: . These estimated parameters are all significant at the 1% level. See Figure 2 for a comparison between this approximation and the true recursion function.
Figure 1 Static versus dynamic certainty equivalent (a) and naïvely estimated versus true coefficient of relative risk aversion (b) \((\rho=0.5, z=1.9, \varphi=0.95, R=3, \delta=0.9, \text{ and } w^0=5)\)
Figure 2 The Impact of Wealth Dynamics on Naïve Individual Estimates of Risk Aversion
Figure 3 True Wealth Recursion Function (blue) with the Estimated 6th Order Polynomial Approximation (red)