The Fight Against Hunger and Malnutrition

The Role of Food, Agriculture, and Targeted Policies

Edited by
David E. Sahn

OXFORD UNIVERSITY PRESS
2015
The Micronutrient Deficiencies Challenge in African Food Systems

Christopher B. Barrett and Leah E. M. Bevis

Introduction

Per Pinstrup-Andersen was among the first to call attention to the “triple burden” of malnutrition that transcends insufficient dietary energy supply to encompass problems of overweight/obesity and micronutrient deficiencies as well (Pinstrup-Andersen 2005, 2007). He has also been among the most articulate analysts of the complex linkages between producers, consumers, and marketing intermediaries in food systems in developing countries (Pinstrup-Andersen 2007, 2010; Pinstrup-Andersen and Watson 2011; Gómez et al. 2013). In this chapter, we celebrate Per’s insights in both of these dimensions with a review of the oft-overlooked role of micronutrient deficiencies and their relation to nutrition-related poverty traps, with an emphasis on the many entry points within food systems where micronutrients deficiencies might originate and be remedied.

“Hidden hunger” due to micronutrient (mineral and vitamin) deficiencies is widespread. Iron deficiency is one of the most common nutritional disorders worldwide (McDowell 2003). About 1.6 billion people (25 percent of the global population and almost 50 percent of children worldwide) suffer from anemia, of which half is iron-deficiency anemia, while iron deficiency without anemia is equally common (Horton and Ross 2003; WHO 2008). One-third of school-age children and a similar share of the global population suffer from insufficient iodine intake and are, therefore, at risk of iodine deficiency disorder (IDD), even though over half of the world’s population has access to iodized salt (WHO 2004). Vitamin A deficiency affects up to 21 percent of children under 5 (WHO 2009). Food availability data suggest
that at least one-third of the global population suffers from zinc deficiency (Hotz and Brown 2004).

Widespread micronutrient malnutrition is particularly problematic, given the potential irreversibility of its effects. Even short periods of severe micronutrient malnutrition in utero or during early childhood can permanently damage a child's future physical ability, cognitive capacity, and civic and economic productivity. For example, severe iodine deficiency is the most common cause of preventable mental defects worldwide, and even mild iodine deficiency, which also falls under the broad category of IDD, reduces cognitive abilities (Hetzel 1990; Hetzel and Wellby 1997). Severe selenium deficiency in utero is associated with cretinism, and even mild selenium deficiency in pregnant women can have lifelong health impacts for their unborn children through miscarriage, preeclampsia, and pre-term labor (Mistry et al. 2012). Vitamin A deficiency is a leading cause of acquired blindness in children (WHO 2009). Zinc deficiency causes abnormal labor and fetal abnormalities in pregnant women, retards physical growth and cognitive capacity in children, and delays sexual maturity in adolescents (Prasad 2003; Hotz and Brown 2004). Micronutrient deficiencies can thereby lead to permanent impairment, especially among young children who neither understand the consequences of insufficient intake nor have much agency over their diets. And by degrading human capital, such irreversible cognitive and physical impairment may readily lead to poverty traps (Barrett 2010; Barrett and Carter 2013).

The widespread prevalence and stubborn persistence of micronutrient deficiencies is illustrated in Figure 3.1, which depicts the association between global national income (GNI) per capita and the national-scale prevalence of wasting (weight-for-height Z-score < -2), several micronutrient deficiency indicators, and stunting (height-for-age Z-score < -2). This relationship depicted reflects a simple univariate logarithmic regression, using the most current indicators available in reasonably consistent form. Note that the prevalence of wasting, characterized by extremely low weight-for-height and caused primarily by insufficient macronutrient (mainly calorie and protein) consumption, poor sanitation, and early childhood infections, starts relatively low and falls rapidly with growth in a country's GNI. This suggests that people increase macronutrient intake fairly immediately with a rise in income.

By contrast, stunting (characterized by extremely low height-for-age) and indicators of micronutrient deficiency appear much less responsive to growth in GNI. Stunting reflects the cumulative impact of all insults to health, including macro- and micronutrient deprivation, and particularly in early childhood (Thomas et al. 1991; Fogel 2004). The primary clinical indicator for zinc deficiency, for example, is stunting (Hotz and Brown 2004), and iron deficiency is also associated with stunting (Yip 2001).

Figure 3.1 Associations among income and micronutrient deficiencies

Data sources:
GNI data from World Bank (2014).
Anemia, vitamin A, and zinc indicators from the FAO/WHO database.
Stunting and wasting data from UNICEF (2012).

With the exception of vitamin A, the prevalence of each micronutrient indicator is less responsive to growth in GNI per capita than wasting, micronutrient deficiencies are less responsive to growth in GNI per capita than wasting. Figure 3.1 strongly suggests that, unlike income rises, leading to reductions in stunting, micronutrient deficiencies of wasting at all levels of GNI and the stunting at all levels of GNI are less responsive to growth in GNI per capita.

This pattern is somewhat counterintuitive, but it is consistent with the findings of a recent study by the Food and Agriculture Organization's (FAO's) central unit on micronutrient deficiencies. The income elasticity of dietary nutrients, such as calories and vitamins, is greater than one.
The population suffers from zinc deficiency. Severe iodine deficiency is the most prevalent in developing countries, with the broad category of IDD, reduces physical growth and cognitive capacity (Prasad 2003; Hotz 2004). Severe selenium deficiency is known as Keshan disease, and even mild selenium deficiency can lead to permanent health impacts for the unborn and pre-term labor (Mistry et al. 2002). Deficiencies in iron are a cause of acquired blindness in children. Anemia, vitamin A, iron, and zinc deficiencies can thereby lead to permanent damage in children who neither understand the importance of their diets. This is an example of how irreversible cognitive and physical development can be affected by these malnutrition indicators (Barrett and Barrett 2010).

The figure shows the relationship between micronutrient deficiency and disability, and the national-scale prevalence of micronutrient deficiency indicators. This relationship depicts the association between income and the national-scale prevalence of micronutrient deficiency indicators. The figure shows that income is strongly correlated with the prevalence of micronutrient deficiency indicators. The prevalence of micronutrient deficiency indicators is higher in countries with lower income. This suggests that people with lower income have higher prevalence of micronutrient deficiency indicators.

Figure 3.1 Associations among income and malnutrition indicators

Data sources:
GNI data from World Bank (2014).
Anemia, vitamin A, and zinc indicators from United Call to Action (2009).
Stunting and wasting data from UNICEF (2013).

With the exception of vitamin A deficiency, which declines at a faster rate than wasting, micronutrient deficiencies and stunting appear much less responsive to growth in GNI per capita than does wasting. The average prevalence of each micronutrient indicator is higher than the average prevalence of wasting at all levels of GNI and remains at unacceptably high levels of 30 percent or more throughout the low-income range and above 10 percent throughout the middle-income range.

Figure 3.1 strongly suggests that while dietary energy intake increases as income rises, leading to substantially improvements in the undernourishment measure that serves as the United Nations’ Food and Agriculture Organization’s (FAO’s) central indicator of hunger and food insecurity, micronutrient intake does not always increase at the same rate.

This pattern is somewhat counterintuitive, as economists commonly believe that the income elasticity of dietary diversity, the main source of dietary minerals and vitamins, is greater than one, meaning dietary diversity increases faster...
than income. So why are micronutrient deficiencies so much less responsive to income growth than are the wasting or undernourishment indicators that guide most popular and high-level policy and popular discussions of hunger and food insecurity? There are multiple prospective reasons for the apparent slow response of micronutrient deficiencies to income growth, each related to different, important features of food systems. Knowing where within the food system these problems originate, and why, is essential to targeting and prioritizing among candidate policy and technology interventions. It is therefore important to begin integrating the disparate research findings that exist on the etiology and effective treatment of micronutrient deficiencies into a more holistic food systems perspective. That is the central aim of this chapter.

Is this primarily a downstream problem due to inadequate consumer understanding of micronutrient deficiencies, and dietary transitions associated with income growth and urbanization, as well as consumer response to changing relative prices among food groups? In such circumstances, consumer education and outreach, and perhaps subsidies for micronutrient-rich foods and/or “sin taxes” on unhealthy foods that too often substitute for mineral- or vitamin-dense ones, may be policy instruments of choice.

Or maybe the problem originates mainly—or is most cost-effectively addressed—within the marketing channel that delivers food from farmers to consumers. This would be especially true if supply chain intermediaries fail to preserve micronutrients in perishable or processed products or to fortify foods with minerals and vitamins where feasible and affordable. Addressing micronutrient deficiencies along the value chain may require improved fortification, processing, and storage technologies, along with, potentially, food quality certification.

Alternatively, the problem might originate primarily at the upstream end, either in cropping patterns and practices that limit the mineral and vitamin content of harvested foods, or in micronutrient deficiencies in the soils and water from which edible plants extract essential minerals. In the former case, research and extension, improved marketing arrangements, or other interventions to induce greater production of micronutrient-rich foods may be a policy priority. If the problem is micronutrient deficiencies in the natural resources used to produce food, however, then minerals must be added, either as nutrient amendments in fertilizers or irrigation water, or by advancing new, micronutrient-dense cultivars (biofortified crops) that can be grown in the appropriate setting, or through post-harvest fortification.

Where should policymakers invest in order to accelerate the reduction of micronutrient deficiencies during the process of economic development and income growth? Unfortunately, the scientific community presently lacks compelling, integrated evidence to inform clear prioritization of the limited resources that governments, non-profits, and agri-food firms have to address

the widespread micronutrient deficiency problem. While we know some micronutrient deficiencies originate in the sense of being able to assess deficiencies. Nor do we know much about native policies or technologies to redress them. It is highly likely that problems exist along the food chain, that the relative balance among food sub-populations, and that policies might be crafted through this intrinsic heterogeneity.

In this chapter we examine a few scenarios that might not decline quickly (as all may or might within a food systems perspective, in which the food systems perspective is a more holistic approach to diagnosing and addressing micronutrient deficiencies. We focus on this, the world region in which mic
Micronutrient Deficiencies in African Food Systems

The widespread micronutrient deficiencies that plague the low- and middle-income world. While we know something about where in the food system micronutrient deficiencies originate, this knowledge is not being integrated, in the sense of being able to assess comparatively sources of micronutrient deficiencies. Nor do we know much about the relative effectiveness of alternative policies or technologies to remedy these problems. Moreover, it seems highly likely that problems exist at multiple points along the food value chain, that the relative balance among them varies sharply among distinct sub-populations, and that policymakers lack guidelines to steer communities through this intrinsic heterogeneity.

In this chapter we examine a few specific reasons why micronutrient deficiencies might not decline quickly with rising GNI per capita. We nest this within a food systems perspective, in an effort to make a small step towards a more holistic approach to diagnosing and treating the serious challenge of micronutrient deficiencies. We focus primarily on African food systems, as this is the world region in which micronutrient deficiencies are most severe.

Consumer Demand Patterns

As incomes grow from a very low level, the elasticity of macronutrient (calorie and protein) intake with respect to income growth appears to decrease rapidly (Deaton 1997). Beyond some rather low level of food expenditure at which energy and protein intake becomes sufficient to transcend the physical discomfort of hunger, consumers' non-nutritional preference for variety, taste, appearance, convenience, and social status of foods—and demand for non-food goods and services—seems to predominate (Strauss and Thomas 1998; Barrett 2002). By contrast, micronutrient malnutrition is often called "hidden hunger" because, unlike the physical sensations of stomach pain or fatigue that commonly signal energy or protein deficiency and trigger food consumption to take in macronutrients, mineral and vitamin deficiencies rarely manifest themselves in obvious sensory ways until the condition becomes severe. Thus, individuals are often unaware that they lack essential minerals and vitamins.

The difference in the sensory feedback loop between macro- and micronutrients could help explain the apparent income elasticity differential between micronutrient deficiencies and more palpable forms of protein-energy malnutrition as an information problem. If true, then educating consumers and cooks, especially mothers who commonly make food choices on behalf of their children, about micronutrients would seem a logical strategy. Indeed, efforts to promote breastfeeding and appropriate complementary feeding practices for young children aim in part to reduce child micronutrient...
malnutrition (Isabelle and Chan 2011). However, little empirical evidence exists on the linkage between information/education and micronutrient deficiency. Existing studies that do evaluate nutrition education interventions tend to focus on macronutrient rather than micronutrient intake, to be located within the developed rather than developing world, and to evaluate interventions using potentially biased, self-reported outcomes rather than objective, measured outcomes such as biomarkers (Abood et al. 2004; Kroeze et al. 2011; Poelman et al. 2013). Until more research is done, the linkage between nutrition knowledge and micronutrient deficiency will remain a largely untested hypothesis.

Information gaps are just one of the candidate explanations at the downstream, consumer end of the food system. Across the developing world, rising GNI is associated with a "nutritional transition" as consumer diets naturally evolve with increasing disposable income. This transition differs across regions, but is generally characterized by a diversification away from traditional staples of coarse grains, legumes, and roots and tubers, and accompanied by increasing consumption of finer grains like rice and wheat, of animal-source foods, of temperate fruit and vegetables, and of “Western” processed foods high in sugars and fats (Regmi 2001; Pingali 2006). This dietary transition can either accelerate or decelerate micronutrient intake. We review a few potential impacts next.

Rising income is almost always accompanied by greater consumption of animal-source foods (Regmi and Dyck 2001). Not only does this decrease wasting in places where children suffer from hunger and protein deficiency, it should also increase intake of iron, zinc, selenium, vitamin B12, and other micronutrients commonly found in animal-source foods. Zinc, for instance, is primarily found in animal-source foods, particularly in meat and shellfish but to a lesser extent in eggs and dairy products (Dibley 2001; Hotz and Brown 2004). While the majority of iron intake comes in the form of plants and dairy products, the bioavailability of iron found in animal flesh is much higher. Additionally, consuming even small amounts of meat along with other foods increases the iron absorption from the non-meat foods by a factor of around four (Yip 2001). Selenium is most bioavailable in cereals, but is also found in high—though slightly less bioavailable—levels in meat, poultry, and milk (Mistry 2012). Animal organs, such as kidney or liver, hold particularly high levels of selenium. Vitamin B12 is found almost solely in animal-source foods, including milk, honey, and eggs, though an animal’s ability to synthesize B12 is dependent on sufficient cobalt in their feed, and thus in soils (Graham et al. 2007).

The nutritional transition is also characterized by a shift in staple foods. Often this includes reduced consumption of coarse grains, such as millet and sorghum, and of roots and tubers, and increased consumption of wheat flour, particularly in the form of breads, pastas, and rice (Doshi et al. 2006; Dapi et al. 2007). There is, of course, considerable variation in patterns. For example, estimates of the proportion of staple foods that are fortified are routinely very low, sometimes approaching zero. One reason for this is that staple foods typically contain less minerals, but more calories per unit weight, than do grains. And more minerals are often found in the volume of staple foods consumed than the weight of staple foods as dietary diversity increases.

Like the rest of the developing world, urban residents typically face especially high levels of poverty and increasingly work away from home, both for income and for employment opportunities. Multiple studies indicate that women’s time, specifically, increases from home, often from street vending—Regmi 2001; Regmi and Dyck 2006—and Dapi et al. (2007) note that urban youth in poorer families, consume high quantities of food around.

Without context-specific information, the urbanization of women’s time, specifically, increases from home, often from street vending—Regmi 2001; Regmi and Dyck 2006—and Dapi et al. (2007) note that urban youth in poorer families, consume high quantities of food around.

Without context-specific information, the urbanization of women’s time, specifically, increases from home, often from street vending—Regmi 2001; Regmi and Dyck 2006—and Dapi et al. (2007) note that urban youth in poorer families, consume high quantities of food around.

Without context-specific information, the urbanization of women’s time, specifically, increases from home, often from street vending—Regmi 2001; Regmi and Dyck 2006—and Dapi et al. (2007) note that urban youth in poorer families, consume high quantities of food around.
Micronutrient Deficiencies in African Food Systems

...particularly in the form of breads, and polished rice (Regmi 2001; Pingali 2006; Dapi et al. 2007). There is, of course, considerable variation in such patterns. For example, estimates of the income elasticity of demand for cassava are routinely very low, sometimes negative, in contrast to relatively robust income elasticity of demand for potato in most developing countries and to highly variable elasticity estimates for sweet potatoes and yams (Scott et al. 2000).

One reason the shift in staple foods matters is that the mineral and vitamin content differs considerably among staple foods. Table 3.1 compares selected micronutrient and vitamin levels in a number of unprocessed grains and roots and tubers commonly eaten in Africa. The common roots and tubers typically contain less minerals, but considerably more of certain essential vitamins, than do grains. And among the cereals there are important differences in, for example, iron, zinc, or beta-carotene content. The nutritional transition, therefore, often implies some reduction in micronutrient density of staple foods, which may or may not be compensated for by an increase in the volume of staples consumed or increased consumption of non-staple foods as dietary diversity increases.

...like the rest of the developing world, Africa is urbanizing rapidly. Urban residents typically face especially high opportunity costs to their time, as they increasingly work away from home and spend extended periods commuting to and from jobs. Multiple studies show that increased opportunity cost of women’s time, specifically, increases demand for convenient “food away from home,” often from street vendors, and for foods that are faster to prepare (Regmi 2001; Regmi and Dyck 2001; Pingali 2006). For example, Dapi et al. (2007) note that urban youth in Cameroon, and particularly those from poorer families, consume high quantities of fried dough because “it is always around.”

Without context-specific information, the relationship between increased reliance on fast food/street food and micronutrient consumption is ambiguous. It seems, however, that a high proportion of street food relies on wheat flour and/or rice, as well as fats, oils, salts, and sugars (Regmi and Dyck 2001; Pingali 2006; Dapi et al. 2007). Thus, if income and urbanization are associated with increased consumption of time-saving street food, this may exacerbate a more general shift towards processed wheat and rice consumption and anti-nutrients, i.e., to foods offering “empty calories” rather than essential minerals and vitamins.

Consumer choice among foods responds to relative prices. Food supply growth has been concentrated disproportionately in cereals for the past half century, resulting in falling relative prices for grains and products made from processed cereals—flours, corn syrup, etc. Ironically, then, crop productivity growth, a primary mechanism for achieving success in reducing...
Table 3.1. Vitamin and mineral quantities found in 100 g of West African raw food items

<table>
<thead>
<tr>
<th>Foods (all raw)</th>
<th>Iron (mg)</th>
<th>Zinc (mg)</th>
<th>Vit C (mg)</th>
<th>RAE* / Vit A (mcg)</th>
<th>B-carotene equiv/Vit A (mcg)</th>
<th>Thiamin/Vit B1 (mg)</th>
<th>Riboflavin/Vit B2 (mg)</th>
<th>Niacin/Vit B3 (mg)</th>
<th>Vit B6 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily EAR for adult males</td>
<td>6</td>
<td>8.5–9.4</td>
<td>75</td>
<td>NA</td>
<td>1</td>
<td>1.1</td>
<td>12</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Daily EAR for adults females</td>
<td>8.1</td>
<td>7.3–8.6</td>
<td>60</td>
<td>500</td>
<td>NA</td>
<td>0.9</td>
<td>11</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Maize flour: whole-grain, yellow</td>
<td>3</td>
<td>1.73</td>
<td>0</td>
<td>28</td>
<td>366</td>
<td>0.44</td>
<td>0.13</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Maize flour: whole-grain, white</td>
<td>3.8</td>
<td>1.73</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>0.12</td>
<td>0.64</td>
<td>0.8</td>
<td>0.08</td>
</tr>
<tr>
<td>Maize flour: degemered, white</td>
<td>1</td>
<td>0.51</td>
<td>0</td>
<td>0</td>
<td>0.13</td>
<td>0.1</td>
<td>0.5</td>
<td>5.6</td>
<td>0.29</td>
</tr>
<tr>
<td>Wheat grains: whole-grain</td>
<td>4.7</td>
<td>1.7</td>
<td>0</td>
<td>0</td>
<td>0.28</td>
<td>0.1</td>
<td>0.1</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Wheat flour: white</td>
<td>2</td>
<td>1.8</td>
<td>0</td>
<td>1</td>
<td>0.28</td>
<td>0.1</td>
<td>0.1</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Pearl millet: whole-grain</td>
<td>[7.6]</td>
<td>2.83</td>
<td>0</td>
<td>0</td>
<td>[3]</td>
<td>0.32</td>
<td>0.27</td>
<td>2.4</td>
<td>0.74</td>
</tr>
<tr>
<td>Pearl millet: flour without bran</td>
<td>[5.8]</td>
<td>2.91</td>
<td>0</td>
<td>[3]</td>
<td>0.18</td>
<td>0.14</td>
<td>1.3</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rice: whole-grain</td>
<td>1.9</td>
<td>2.02</td>
<td>0</td>
<td>0</td>
<td>0.38</td>
<td>0.07</td>
<td>5</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Rice: white, polished</td>
<td>0.7</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0.03</td>
<td>0.4</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Sorghum: whole-grain</td>
<td>3.7</td>
<td>1.79</td>
<td>0</td>
<td>1</td>
<td>[17]</td>
<td>0.36</td>
<td>0.16</td>
<td>3.3</td>
<td>0.25</td>
</tr>
<tr>
<td>Sorghum: degemered flour</td>
<td>3.8</td>
<td>2.14</td>
<td>0</td>
<td>1</td>
<td>0.36</td>
<td>0.16</td>
<td>3.3</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Cassava tuber</td>
<td>0.7</td>
<td>0.34</td>
<td>30</td>
<td>1</td>
<td>0.04</td>
<td>0.05</td>
<td>0.7</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Cocoyam tuber</td>
<td>0.6</td>
<td>0.38</td>
<td>8</td>
<td>NA</td>
<td>0.1</td>
<td>0.03</td>
<td>0.8</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Sweet potato (pale yellow)</td>
<td>1.1</td>
<td>0.39</td>
<td>22.3</td>
<td>3</td>
<td>0.09</td>
<td>0.04</td>
<td>0.6</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Irish potato</td>
<td>0.9</td>
<td>0.35</td>
<td>17.3</td>
<td>1</td>
<td>0.08</td>
<td>0.12</td>
<td>1.2</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Table 3.1, Rows 1–17
- Data from the West Africa Food Composition Table (FAO 2012).
- *RAE*—Retinol activity equivalent, a measure of vitamin A activity based on the capacity of the body to convert provitamin carotenoids into retinol.
- The foods in Table 3.1 represent average values of the collected compositional data from nine countries (Benin, Burkina Faso, Gabon, Ghana, Guinea, Mali, Niger, Nigeria, and Senegal). Data sources for rows 3–17 included scientific papers, theses, university reports, as well as food composition databases. These data were supplemented by other sources of food composition data (mostly from outside Africa) to complete the missing values, especially minerals and vitamins. For some vitamins, especially vitamins A and E, data were not available and no sources were found from which to derive reliable data.
- Table 3.1, Rows 1–2
- Estimated Average Requirement (EAR) is the nutrient intake value that is estimated to meet the requirement defined by a specified indicator of adequacy in 50 percent of a population defined by gender and age.
- The exact age of reference in the EARs listed above changes according to micronutrient: 19–50 years for iron and zinc, 19–70 years for vitamin C, >19 years for vitamin A, and 18–30 years for all B vitamins.
- All EAR data are taken from the latest USDA Dietary Reference Intake reports, which can be found at USDA (2014).
- Recommended Daily Allowance (RDA) is often used alongside EAR when discussing adequate levels of micronutrient intake. RDA is defined as the nutrient intake value that will meet the requirement of 97–98 percent of individuals in a given population. When the standard deviation of EAR (SD) is known, RDA is calculated by allowing RDA = EAR + 2 × SD. When the distribution of EAR is unknown, RDA is calculated using RDA = 1.2 × EAR.
- Micronutrient deficiencies manifest as headaches, fatigue, and developmental delays. Micronutrient deficiencies may have inadvertent adverse effects on health and productivity.
- Micronutrient deficiencies may have inadvertent adverse effects on health and productivity.
- Micronutrient deficiencies manifest as headaches, fatigue, and developmental delays.
Micronutrients along the Food Value Chain

Another central feature of income growth and the structural transformation of economies is the rise of commercial food market intermediation. People and households increase their food consumption, and they rely more on food markets, including supermarkets, food retailers, and restaurants. This transformation is driven by several factors, including changes in food preferences, the rise of urbanization, and the expansion of trade networks. The increase in food market intermediation has implications for the distribution of income and for the health of the population, as food markets can provide access to a wider variety of foods, but they can also contribute to the concentration of wealth and power in the hands of a few large players.

Micronutrient Deficiencies in African Food Systems

Micronutrient deficiencies, particularly vitamin A, iron, and zinc, are endemic in many African countries. These deficiencies occur because the diets of people in these areas are often low in these nutrients, and the food systems that support these diets are characterized by low productivity and high vulnerability to shocks. Micronutrient deficiencies can have serious health consequences, including blindness, anemia, and reduced cognitive development.

Micronutrient deficiencies may in turn have adverse effects on economic growth, as deficiencies in vitamin A, iron, and zinc can reduce labor productivity and cognitive development. These deficiencies can also exacerbate poverty, as people who are already poor are more vulnerable to micronutrient deficiencies, and they may struggle to afford the foods that are necessary to meet their micronutrient needs.
Urban residents often enjoy higher availability of many processed food items, while suffering lower availability of fresh food items (Regmi 2001; Pingali 2006; Gómez and Ricketts 2013). In many low- and middle-income countries, fruits and vegetables, especially, are either less available to poor urban residents or at least less fresh. This has clear implications for micronutrient intake, as it is well known that the vitamin content of fruit and vegetables declines over time after harvest. For example, the content of vitamin C, one of the most unstable vitamins within food, declines by 20–60 percent in broccoli, carrots, green beans, and peas within one week of storage at an ambient temperature, and by even more in spinach (Favell 1998; Hunter and Fletcher 2002; Rickman et al. 2007). B vitamins, especially thiamin (vitamin B1) and riboflavin (vitamin B2), degrade similarly over time after harvest. Losses are reduced significantly when vegetables are stored at colder temperatures, but cold chains are not readily available in most of Africa.

So the micronutrient content of vegetables and fruits is likely compromised by longer-distance FMCs, with exceptions perhaps for the highest-end supermarket chains that charge better-off consumers higher prices to cover the costs of refrigeration along the supply chain. In Africa, the “garden fresh” vegetables consumed in rural areas are almost certainly optimal when it comes to micronutrient intake, with frozen or refrigerated vegetables the best alternative. On the other hand, “garden fresh” is often only seasonally available in rural areas, as micronutrient-rich foods typically become scarce in lean seasons. Thus, modern FMCs could actually boost micronutrient intake for some urban consumers, if the compromised levels of micronutrients in their food is offset by their year-long food availability thanks to imports (Gómez and Ricketts 2013). The real losers are likely to be the urban poor and working class, who have neither access to seasonally available “garden fresh” food nor constantly available, higher-end food available in supermarkets or particularly efficient markets.

A different form of micronutrient loss occurs due to changes in post-harvest processing technologies as grains, legumes, and tubers shift from home-based artisanal processing to industrial milling (Welch 2001). For example, before the advent of large-scale mechanical milling machines in villages, rice was processed for cooking mainly by pounding or parboiling. Now, rice is most commonly eaten after “polishing,” a process which removes the bran, or outer layers, of the rice grain. This bran includes the pericarp, seed coat, testa, and the nutrient-rich aleurone layer; the germ of the grain is often removed along with the bran. Thus, much of the iron, zinc, calcium, vitamins, and some of the protein are lost to polishing (Lauren et al. 2001). Similarly, wheat is usually milled before use. In semi-subsistence rural settings, this is typically done by stone grinding, which retains all components of the wheat, including the aleurone layer and the germ. As with rice, however, modern milling of the wheat grain, shearing away most of the healthy oils carried in the aleurone, reduces its micronutrient content. Welch and Graham (1999) show that the iron and zinc reductions in sorghum similarly compare micronutrient losses; in wheat, rice, maize, sorghum, and the other major cereals of all types have lower levels of micronutrients after larger-scale, longer-distance market-processing technologies that strip the outer parts of the grain away.

Food fortification aimed at increased micronutrient content is implemented in developed countries, often fortified with vitamin A; iodine, iron, and zinc; and sometimes even other essential nutrients. The development of commercially fortified foods is achieved by processors in Africa, although this is largely a recent phenomenon.

It is also necessary, in any given country, to fortify food with vitamins as well as minerals. With respect to a particular target group, such as children or pregnant women, the global, or even nationwide consumption data for these groups are insufficient. Welch (2010) found that vitamin A fortification is not only cost effective but also takes into account the most at risk of vitamin A deficiency. The introduction of sugar rather than salt has been a failure.

The effectiveness of food fortification begins with good fortification practices. Rice “dusting” for instance, involves mixing grains with a powdered form of micronutrient sources. The quality control is also key and requires the fortification is done under good conditions
Micronutrient Deficiencies in African Food Systems

The availability of many processed food items (Regmi 2001; Olu-Pedne and Sahu 2013). In many low- and middle-income countries, availability, are either less available to poor people has clear implications for micronutrient content of fruit and vegetables. For example, the content of vitamins within food, declines by 20% within one week and even more in spinach (Favell et al. 2007). B vitamins, especially thiamin (vitamin B2), degrade similarly significantly when vegetables are stored. Chains are not readily available in vegetables and fruits is likely compromised for those perhaps for the highest-end super-consumers higher prices to cover the chain. In Africa, the “garden fresh” is often seasonally available; foods typically become scarce in October and actually boost micronutrient intake. Promised levels of micronutrients in packaged food availability thanks to importers. Products are likely to be the urban poor and to seasonally available “garden fresh” and food available in supermarkets or stores.

What occurs due to changes in post-harvest losses, and tubers shift from home-based cooking (Welch 2001). For example, before milling machines in villages, rice was cooked or parboiled. Now, rice is most likely to be processed which removes the bran, or includes the pericarp, seed coat, testa, but the germ of the grain is often removed. The iron, zinc, calcium, vitamins, and fiber (Lauren et al. 2001). Similarly, wheat in subsistence rural settings, this is typically integrated into all components of the wheat, including the aleurone layer and the germ, in the final product (Welch 2001). As with rice, however, modern milling removes both the bran and the germ of the wheat grain, shearing away the vitamins, most of the minerals, and most of the healthy oils carried in wheat grain (Pollan 2013).

Welch and Graham (1999) show that rice and wheat lose 69 and 67 percent of their iron contents to milling, respectively, as well as 39 and 73 percent of their respective zinc contents. Even more dramatic effects were found on the iron and zinc reductions in sorghum and maize due to milling. Table 3.1 similarly compares micronutrient levels of both processed and unprocessed wheat, rice, maize, sorghum, and pearl millet from West Africa. Processed cereals of all types have lower levels of both minerals and vitamins. Insofar as larger-scale, longer-distance market intermediation induces a switch in processing technologies that strips the bran and germ from the milled grain, the mineral content of the food degrades.

Food fortification aimed at increasing micronutrient intake has been widely implemented in the developed world. Oils, sugar, and cereal flours are commonly fortified with vitamin A; iodized salt is now consumed across much of the globe; milk is often fortified with vitamin D; and polished rice, white bread, and other processed staples and cereals are commonly fortified with iron and even zinc. Food fortification is most feasible where there exist large, centralized food processors capable of fortifying, packaging, and labeling the relevant food items. Food fortification is most likely to be effective if implemented among a population of well-educated consumers who are (1) aware of the value of added micronutrients in their food and (2) willing to pay for that value addition (Dary and Mora 2002). Both of these conditions slow the development of commercially viable post-harvest fortification of foods by processors in Africa, although there has been some progress over the past decade or so.

It is also necessary, in any given setting, to consider which food(s), once fortified, will be the most effective vehicle(s) for any given micronutrient with respect to a particular target population (Mora et al. 2000). Utilizing nationwide consumption data for Uganda, for example, Fiedler and Añor (2010) found that vitamin A fortification of vegetable oil is 4.6 times more cost effective than vitamin A fortification of sugar, but that the Ugandans most at risk of vitamin A deficiency would benefit disproportionately from the introduction of sugar rather than oil fortification.

The effectiveness of food fortification preparation relies on a few issues. To begin with, fortification methods must be appropriate to local food preparation practices. Rice “dusting” for instance, which entails dusting polished rice grains with a powdered form of micronutrient premix, is not appropriate in countries where rice is washed and rinsed before cooking (Alavi et al. 2008). Quality control is also key and requires government monitoring. Such
monitoring may be difficult for cash-strapped countries, or for countries where processing occurs at many small facilities rather than a few larger facilities (Alavi et al. 2008).

The Production End of the Food System

The central role of food production to address nutrient deficiencies is well known. The Green Revolution of the 1960s–1980s aimed to reduce malnutrition, understood then as protein and energy deficiencies. It largely succeeded in that task, significantly expanding the per capita supply of both calories and protein (Evenson and Gollin 2003). It failed, however, to similarly expand the per capita supply of minerals and vitamins. Thus, the agricultural technological change associated with the Green Revolution may have inadvertently shifted relative profitability and prices, by decreasing per capita micronutrient supplies and driving up the relative prices of micronutrient-rich foods, thereby discouraging price-sensitive poor consumers from buying such foods (Gómez et al. 2013). Today, as the world has come to appreciate that improving nutrition requires more than just rapidly increasing the global production of calories and protein, attention is slowly shifting away from calorie-dense staple grains toward micronutrient-rich fruits, legumes, vegetables, and animal-source foods.

The upstream, production end of the food system impacts micronutrient intake through at least four distinct pathways. First, the soils and water that farmers use are the primary source of minerals in the plants that humans eat or feed to livestock (Allaway 1986). Thus, if the soil of a region is low in particular minerals, families who rely only on locally produced foods will typically suffer from a deficiency of the locally scarce nutrient.

Iodine exemplifies this rule. It is rare in the earth’s crust and found primarily in seawater. Thus, mountainous areas or inland areas, where wind and rain are unable to carry iodine in trace amounts from the sea, are most likely to have iodine-deficient soils (McDowell 2003). These are precisely the areas where iodine deficiency and goiter—the most prevalent clinical manifestation of iodine deficiency—are most widespread. For example, in the High Atlas Mountains of Morocco, far from the ocean with soils severely lacking in iodine, a large majority of households suffer iodine deficiency. The likelihood of such deficiency was explained largely by how much purchased fish a family consumed, since ocean fish imported from the coast was the only source of dietary iodine available in the valley, which did not have iodized salt available (Oldham et al. 1998).

The linkage between soils and plants is particularly strong for certain micronutrients. Zinc, nickel, iodine, and selenium are all nutrients that are clearly transmitted from soils to plants, but harvesters, dockers, and processors, however, do not correlate well with animal products (Griffith and Welch 2010; Graham et al. 2012). Translocation of soil micronutrients to animal and plant tissues is typical, and certain animal “diseases” (those associated with a lack of vitamins) occurred consistently in particular grazing animals when their usual forage was shifted to a different grazing area. Grazing animals that produce micronutrient-rich food for human consumption are notably important as well. Farmers can supplement the natural supply of micronutrients in animal products, but there has thus far been a lack of progress in increasing the micronutrient content of plant products.

This is a pity, as soils have been shown to be an important source of reducing micronutrient malnutrition in developing countries. For example, iodine deficiency was widespread in the North China province of China, until policymakers mandated arsenic removal via irrigation water (Cao et al. 2009). It is estimated that added iodine persisted in the soil for more than 15 years. However, levels of iodine in plants, livestock, and humans have returned to levels prior to irrigation (Yang 2001).

What is more, infant mortality declined only in counties that added iodine to their local grains to elevate levels of iodine in plants, livestock, and humans. Similarly, man.” What is more, infant mortality declined as iodine levels increased in the blood of pregnant women in Malawi, a country where iodine deficiency is still widespread. The difference between iodine-deficient and non-deficient parts of the country are striking, with iodine-deficient individuals showing higher levels of infant mortality (Müller et al. 2008).

Similarly, certain regions have serious deficiencies in other nutrients. Selenium is an example. In Finland, widespread deficiencies in soil selenium has been documented. However, selenium is an essential nutrient for crop growth, and thus for the food system. In the United States, selenium is added to feed for livestock, and to grains. However, in Malawi, where selenium is extremely deficient, it is not nearly as heavily consumed as iron. It is estimated that mean dietary intake of selenium is about 15% of the recommended intake in Malawi, and that this deficiency is likely to continue for many years. The difference between selenium-deficient and non-deficient parts of the country is striking, with selenium-deficient individuals showing higher levels of infant mortality (Müller et al. 2008).

Similar examples can be found for other regions. In Bangladesh, Mayer et al. (2007) showed that zinc status affects the zinc content of
are clearly transmitted from soils to crops to humans; iron levels in soils, however, do not correlate well with iron levels in plants or humans (Bouis and Welch 2010; Graham et al. 2012). Scientists first realized the importance of soil micronutrients to animal and human health when they noticed that certain animal “diseases” (those associated with micronutrient deficiencies) occurred consistently in particular grazing areas, but disappeared once animals were relocated to a different grazing ground (Allaway 1986). Not all soils that are productive in terms of crop yields (product weight per unit area) produce micronutrient-rich food for man and animals.

Farmers can supplement the natural availability of micronutrients with fertilizers, but there has thus far been relatively little attention paid to micronutrients amid the burgeoning interest in fertilizers in African food systems. This is a pity, as soil has been shown to be a highly effective entry point for reducing micronutrient malnutrition in various areas of the world. For example, iodine deficiency was widespread in Xinjiang, the westernmost province of China, until policymakers decided to try increasing soil iodine levels via irrigation water (Cao et al. 1994). Subsequent results were startling: measurements of soil, crops, livestock, and human urine indicated that added iodine persisted in the soil for more than four years, continuing to elevate levels of iodine in plants, animals, and humans (Ren et al. 2008). What is more, infant mortality declined by 50 percent, with similar rates of decline for neonatal mortality, and children born after treatment had larger heads and taller stature (Delong et al. 1997; Ren et al. 2008). Ren et al. (2008) wrote that soil proved an efficient entry point for iodine into the food system, since this intervention did not require any medical expertise or knowledge on the part of local families, and it improved livestock production as well as human health.

Similarly, certain regions have soils low in selenium, and thus produce both crops and humans with low selenium status. In Finland, for example, selenium added to fertilizers and applied to soils increased the selenium status of the entire Finnish population from below WHO deficiency levels to above them (Mäkelä et al. 1993). In Malawi, Chilimba et al. (2011) measured widespread deficiencies in soil levels of selenium across the country, and calculated that mean dietary intake of selenium was at 40 and 60 percent of recommended values in two particular districts, respectively. Because maize is so heavily consumed in Malawi, it contributed the bulk of all selenium intake for most families. Later field trials showed that applying selenium-enriched fertilizers to maize fields could likely raise the selenium intake of households into the recommended intake levels (Chilimba et al. 2012).

Similar examples can be found for soil-to-human zinc transmission. In rural Bangladesh, Mayer et al. (2007) showed that soil pH, rice variety, and soil zinc status affect the zinc content of rice, and that the zinc content of rice is
Christopher B. Barrett and Leah E. M. Bevis

strongly and statistically significantly associated with zinc levels in human hair. They concluded that zinc-enriched fertilizers, as well as a few other soil management techniques, may significantly improve human zinc status in rural Bangladesh. Similarly, Tidemann-Andersen et al. (2011) found that zinc intake was low in Ugandan populations, primarily due to staples being low in zinc. They suggested that the low zinc content of Ugandan staples, as compared to Kenyan and Malian staples, stems from differences in soil zinc content or soil zinc availability.

The most serious micronutrient deficiencies commonly arise in rural areas of developing countries where families depend heavily on locally grown food crops and have little access to processed foods that are subject to post-harvest mineral or vitamin fortification. In such situations, income growth that leads to increased food consumption might lessen hunger or wasting rates, yet does little to decrease the prevalence of micronutrient deficiencies that stem from the soils. Farmers, and even agriculture ministries and local researchers, rarely know the micronutrient status of soils in rural Africa, however, because soil testing is expensive, and micronutrient analysis to increase crop yields, and thereby farm incomes, typically takes priority. While micronutrient-enriched fertilizers may increase crop yield in highly deficient soils, this is not always the case. For instance, Cakmak (2002) explained that while foliar application of zinc and application of zinc-enriched fertilizer often increased zinc content in grain, there was no direct economic motivation for such application, since grain yield does not increase along with zinc density. Thus, appropriately targeted micronutrient fertilizer regimes, such as those implemented in some high-income countries that have focused specifically on health benefits rather than yield increase, remain largely unknown in Africa.

The second pathway through which production practices affect micronutrient availability and intake arises through crop choice patterns. The Green Revolution prioritized high-yielding cereal varieties—especially, rice and wheat—and encouraged widespread use of fertilizer, irrigation, and other yield-increasing technologies, substantially expanding dietary energy supply. In doing so, however, it also inadvertently decreased the production—and thereby, increased prices and decreased consumption—of micronutrients across much of the developing, resource-poor world (Tontisirin et al. 2002; Graham et al. 2012).

One major trend, the induced shift toward cereal monocropping and away from varied, intercropping or rotation agricultural systems, meant that lower micronutrient crops became more prominent in diets (Welch 2001). In South Asia, the introduction of “modern” rice and wheat production practices resulted in a 200 percent increase in rice production and a 400 percent increase in wheat production over 30 years. Over the same period, however, production of iron-rich legumes decreased; iron density in South Asian diets (mg iron per kcal) declined during the 1990s, with women increasing (ACC/SCN 1992; 2002). High rates of micronutrient malnutrition are because cereals are becoming increasingly depleted, while production of legumes and pulses is resulting in reduced iron and zinc intake. Legumes, including beans and pulses, are processed in such a way that many cereals are processed in such a way that vary. The third pathway concerns the practices, which—irrespective of their growing in micronutrient availability concern, given the current high-level of fertilizer use in African agriculture, fertilizers have changed the micronutrient content. Excessive nitrogen fertilization can affect vitamin C in various horticulture crops, such as Brussels sprouts, and also in fruit crops, such as cantaloupes, and apples (Nagy and Rey 1988; Welch 2001). Harris (1975) write on vitamin C accumulation, in fruit metabolism.

Similarly, nitrogen fertilization to increase grain iron content or grain iron content (Panda et al. 1992). Panda et al. (2012) found that nitrogen-phosphorus-potassium fertilization for high-yielding tropical rice. Soliman (2012) found that sulfur application, application of nitrogen, and phosphorus application to citrus fruits can increase vitamin C content (Salunkhe and Deshpande 1998) times been found to increase beta-carotene content (Abd El-Baky et al. 2002; Abd El-Baky et al. 2010).
Diets (mg iron per kcal) declined dramatically; and the percentage of anemic women increased (ACC/SCN 1992; Welch 2001). Similarly, in West Africa, high rates of micronutrient malnutrition are believed to occur in large part because cereals are becoming increasingly important sources of dietary protein, while production of legumes and animal products has been declining, resulting in reduced iron and zinc in the diet (Lopriore and Muelhoff 2003). Legumes, including beans and pulses, are a richer source of micronutrients than grains, both because most legumes are simply higher in micronutrients than are cereals and because legumes are generally consumed whole, while many cereals are processed in such a way that their micronutrient-rich husks are removed.

The third pathway concerns the use of new and "improved" agronomic practices, which—irrespective of crop choice—may have inadvertently reduced micronutrient availability in harvested crops. Of particular concern, given the current high-level emphasis on promoting inorganic fertilizer use in African agriculture, fertilizer use can increase, decrease, or leave unchanged the micronutrient content of crops (Welch 2001). For example, excessive nitrogen fertilization can adversely affect the accumulation of vitamin C in various horticulture crops such as lettuce, beets, kale, endive, or Brussels sprouts, and also in fruit crops such as oranges, lemons, mandarins, cantaloupes, and apples (Nagy and Wardowski 1988; Salunkhe and Desai 1988; Welch 2001). Harris (1975) wrote that the negative effect of nitrogen on vitamin C accumulation, in fruits at least, could be due to increased acid metabolism.

Similarly, nitrogen fertilization often causes a marked decrease in grain iron content or grain iron uptake (Speirs et al. 1944; Solimon et al. 1992). Panda et al. (2012) found that excessive application of NPK (nitrogen-phosphorus-potassium) fertilizer decreases the iron content of high-yielding tropical rice. Solimon et al. (1992) found that at high levels of sulfur application, application of nitrogen is positively related to corn uptake of manganese, but negatively related to corn uptake of iron and zinc. They discuss a number of other studies that find similar effects with rice, oats, barley, and soybeans. The inverse relationship between manganese and iron/zinc reflects their competition for uptake by plant roots.

Many commercial fertilizers mix phosphorus and/or potassium with nitrogen, and the effect of these additional macronutrients on crop vitamin content appears mixed. Potassium fertilizer usually increases the accumulation of vitamin C in horticulture and fruit (Ildo 1936; Welch 2001), although phosphorus application to citrus fruits can either increase or decrease vitamin C content (Salunkhe and Deshpande 1988). Application of potassium has sometimes been found to increase beta-carotene content in sweet potatoes (George et al. 2002; Abd El-Baky et al. 2010; Laurie et al. 2012), though not always.
Christopher B. Barrett and Leah E. M. Bevis

(Swanson et al. 1933; Samuels and Landrau 1952), while the effect on horticulture is varied (Fellers et al. 1934; Whittmore 1934; Iido 1936). Maynard and Beeson (1943) reviewed a number of studies on the effect of phosphorus application to horticulture and concluded that very little effect could be found of phosphorus fertilizers on crop beta-carotene content. Gao et al. (2011) wrote that potassium chloride fertilization generally decreased zinc in 15 different types of wheat, across a variety of environments. Both grain zinc and grain cadmium were inversely related to grain yield—more grain usually meant less zinc and cadmium per volume. This is not surprising, given that an increase in grain yield is often driven by larger grain size, which comes with a smaller bran to grain interior ratio (R. M. Welch, personal communication). Application of phosphorus fertilizer seems to lower zinc uptake in certain cereals and results in phytate-to-zinc ratios that are less favorable for the bioavailability of zinc to humans (Robson and Pitman 1983; Cakmak 2002). For example, Moraghan (1994) found that applied phosphorus acts as an antagonist to zinc in navy beans, lowering both zinc content and zinc concentration in all areas of the plant.

A longstanding body of agronomic evidence thus suggests that NPK fertilizers are likely to negatively affect the iron, zinc, and vitamin C content of various crops, at least if used in excess. Most interactions between fertilizer application and crop micronutrient levels, however, are context specific. Thus, fertilization has the power to greatly increase micronutrient production if utilized carefully, but also to negatively impact micronutrient production if used without care or without knowledge of these potential interactions.

Fourth, the rise of new crop varieties bred specifically to increase the plant's production of bioavailable micronutrients—a process known as "biofortification"—offers a new mechanism for expanding micronutrient supplies from specific farming systems. Biofortification is designed to target resource-poor, rural, usually agrarian populations in the developing world, who would be unlikely to purchase most fortified foods, even if fortification was feasible in their country (Miller and Welch 2013). So far, biofortified foods have targeted vitamin A, iron, and zinc; and crops developed or under development include sweet potato, maize, cassava, rice, wheat, pearl millet, beans, cowpeas, lentils, sorghum, pumpkin, Irish potato, and banana (Saltzman et al. 2013).

Biofortified foods are primarily meant to be produced and consumed at the household level, rather than purchased (Miller and Welch 2013). In Uganda, for example, HarvestPlus introduced beta-carotene rich Orange-Fleshed Sweet Potatoes (OSP) by distributing 20 kg of free OSP vines to all target households as planting materials, and providing training to farmers' groups on planting techniques (Holt et al. 2012). As OSP intake increased, the prevalence of inadequate beta-carotene intake fell, and the vitamin A status of children seemed to improve. It is possible, however, that some of the increase in OSP intake was due to families purchasing OSP themselves or producing it themselves.

This question of marketability was not the only important issue. The potential impact of biofortified foods may also be limited. Characteristics of biofortified foods may be used to create low-cost non-biofortified foods, though changes in taste may reduce marketability. Introducing iron rice is more challenging than introducing OSP, given the need for planting or their seeds for planting or their pods (personal communication). Crop yields are also critical. Penick et al. (2013) found that the yield of biofortified varieties is lower than those of the non-biofortified cultivar, though this difference decreases with time (Saltzman et al. 2012). Some of these production-level contaminations are known to be specific to crops and settings (high nutrient concentrations in crops in various settings) (Penick et al. 2013). Others regard variation in micronutrient levels across crops, such as the iron levels in legumes and the zinc levels in non-legumes (Saltzman et al. 2012). Others regard variation in micronutrient levels across different settings (high nutrient concentrations in crops in various settings) (Penick et al. 2013). Others, however, emphasize the potential for biofortification, or a particular set of biofortification strategies, to be equally effective and more feasible.

Added Complexity due to Cross-Nutrient Interactions

Micronutrient status suffers (or benefits) from the presence of other nutrient intakes. Deficiency in one micronutrient can worsen the effects of another nutrient deficiency, for example, exacerbates the goiter on the thyroid (Arthur et al. 1999). Zimmermann et al. (2000) in Côte d'Ivoire showed that low soil selenium is associated with the thyroid response to iodine supplementation. Selenium deficiencies are common, a condition that increases the risk of hypothyroidism and may manifest as cretinism—expression of cretinism—the other two are called hypothyroidism (Vanderpas et al. 1990). Myxodema cretinism—expression of cretinism—the other two are called hypothyroidism (Vanderpas et al. 1990). Myxodema cretinism
Micronutrient Deficiencies in African Food Systems

was due to families purchasing OSP locally from their neighbors, rather than producing it themselves.

This question of marketability will always be important in gauging the potential impact of biofortified foods. Rates of adoption and disadoption are also clearly important, as is the rate of product failure, or the "breeding out" of increased micronutrient content. Visibly identifiable characteristics of biofortified foods may be useful in differentiating them from similar, non-biofortified foods, though characteristics viewed as undesirable might reduce marketability. Introducing iron-rich beans to Uganda may prove more challenging than introducing OSP, given that no visible marker differentiates their seeds for planting or their pods for sale (Anna-Marie Ball, personal communication). Crop yields are also clearly important; farmers are unlikely to adopt a biofortified cultivar if its yields are lower than those more typically found at market (Saltzman et al. 2013).

Some of these production-level concerns regard variation in micronutrient levels across crops, such as the iron density of grains as compared to legumes. Others regard variation in micronutrient levels within a particular crop but across different settings (high nutrient soil vs. low nutrient soil), or across various cultivars (traditional crops vs. biofortified crops). It may be hard to know a priori which type of variation is most important in any given setting. For some communities food diversification, or the introduction of new foods, may be the only way to significantly increase micronutrient intake. For others, the micronutrient density of one particular food through biofortification, or a particular set of foods via nutrient-enriched fertilizers, may be equally effective and more feasible.

Added Complexity due to Cross-Complementarities

Micronutrient status suffers (or benefits) from cross-complementarities between nutrients; deficiency in one micronutrient may inhibit absorption of another nutrient or worsen the effects of another deficiency. Selenium deficiency, for example, exacerbates the harmful effects of iodine deficiency on the thyroid (Arthur et al. 1999). In a longitudinal study carried out by Zimmermann et al. (2000) in Côte d’Ivoire, selenium deficiency decreased the thyroid response to iodine supplementation in goitrous patients. In the Democratic Republic of the Congo (DRC) where both iodine and selenium deficiencies are common, a combination of these deficiencies exacerbates hypothyroidism and may manifest itself as myxoedematous cretinism (Vanderpas et al. 1990). Myxoedematous cretinism is one of three forms of cretinism—the other two are called neurological cretinism and Keshan's disease. Foster (1995) wrote that although neurological cretinism is clearly
associated with iodine deficiency, and Keshan’s disease is clearly caused by selenium deficiency, it seems likely that myxoe dematous cretinism stems from a deficiency in both micronutrients.

Similarly, Graham et al. (2012) argued that much of the current iron deficiency in the world may be due to underlying zinc deficiency. Iron status depends both on iron consumption and on iron uptake—how much iron a human body absorbs from consumed foods that contain iron. Graham et al. (2012) explained that iron absorption is partially regulated by a molecule called hepcidin. For example, injections of hepcidin decreased iron absorption both in iron-deficient and iron-adequate mice populations (Laftah et al. 2004). Hepcidin synthesis is induced by infection and inflammation, and zinc deficiency aggregates oxidative stress in cells, causing systematic intestinal inflammation. Thus, it is possible that zinc deficiency contributes to reduced iron absorption by inducing hepcidin synthesis.

Graham et al. (2012) also supported their argument geographically. Much of the world’s iron-deficient populations live on the acidic soils of the wet Asian and African tropics, where iron deficiency in crops is rare but soils are often zinc deficient. Should this connection between iron deficiency and zinc deficiency prove true, zinc deficiency would be all the more crucial a public health issue, given that 1.6 billion people are anemic across the globe (WHO 2008). The hypothesis is still new, however, and more research is necessary to uncover whether zinc deficiency truly plays a role in driving iron deficiency.

Zinc deficiency has potential implications not only for iron status, but for vitamin A status also. The metabolism of vitamin A depends on zinc-containing enzymes (Welch 1997). Zinc-deficient populations cannot utilize vitamin A efficiently, and may therefore become vitamin A deficient. Giving such populations vitamin A supplements, however, without first treating the underlying zinc deficiency, will have little effect (Shrimpton 1993). Similar interrelationships have been shown for iron, because the metabolic activation of provitamin A carotinoids depends on an iron-containing enzyme (National Research Council 1989).

Micronutrient malnutrition that stems from multiple, interacting mineral and/or vitamin deficiencies will clearly be harder to treat than forms of malnutrition that merely require more food, more protein, or more of one particular micronutrient. Such complementarities in micronutrients lead to diseases like myxoedematous cretinism, which stems from both iodine and selenium deficiency. In areas where this disease is prevalent, iodine prophylaxis alone will not prevent widespread depression of IQ (Foster 1995), nor will selenium supplementation alone. Rather, both underlying deficiencies must be addressed to reduce these severe manifestations of micronutrient malnutrition. Recent research supports the hypothesis that many micronutrient deficiencies are at least nominally impacted by the status of multiple micronutrients. If true, micronutrient deficiencies stubbornly persist in the face of intervention throughout the food system, including post-harvest fortification as paths to address them. At the upstream end of the food system, however, micronutrient deficiencies are associated with physical effects that can cause chronic impairments. The returns are high to improving chronic health outcomes through micronutrients in food systems in order to improve human health. Increased attention to agroecological development is how we can achieve this.

At the upstream end of the food system, however, micronutrient deficiencies stubbornly persist in the face of intervention throughout the food system, including post-harvest fortification as paths to address them. At the upstream end of the food system, however, micronutrient deficiencies are associated with physical effects that can cause chronic impairments. The returns are high to improving chronic health outcomes through micronutrients in food systems in order to improve human health. Increased attention to agroecological development is how we can achieve this.

Conclusions

Can we begin to draw any conclusions about how we might intervene in food systems to improve the health of people around the world? There are many possibilities, but one that comes to mind is to focus on improving chronically-ill human health outcomes through micronutrients in food systems in order to improve human health. Increased attention to agroecological development is how we can achieve this.

Farm-level solutions, however, may be necessary to address the problem of micronutrient deficiencies, which are often the result of low-cost interventions. Improvements in agricultural yields and crop yields, for example, can help address micronutrient deficiencies in food. Implementing interventions that increase the availability of micronutrients in food can help address micronutrient deficiencies in food. Implementing interventions that increase the availability of micronutrients in food can help address micronutrient deficiencies in food. Implementing interventions that increase the availability of micronutrients in food can help address micronutrient deficiencies in food. Implementing interventions that increase the availability of micronutrients in food can help address micronutrient deficiencies in food.
Keshan's disease is clearly caused by a lack of myxodematous cretinism stems.

It is estimated that much of the current iron deficiency is due to inadequate zinc deficiency. Iron status and zinc uptake—how much iron a person absorbs—depends on iron absorption and on iron uptake—how much iron a person absorbs. Graham et al. demonstrated that zinc deficiency in mice populations (Laftah et al., 1995) caused by infection and inflammation, and stress in cells, causes systematic evidence that zinc deficiency contributes to the development of hepcidin synthesis.

In their argument geographically. Many inhabitants live on the acidic soils of the wet tropics, in which crops are grown, but soils are rich in iron and zinc, and therefore become vitamin deficient. Soil supplements, however, without first studying the effects of soil deficiencies, will have little effect (Shrimpton, 1989). The problem is that many micronutrients are required for the functioning of the body, and the metabolism of vitamin A depends on the availability of some of these micronutrients.

The connection between iron deficiency and zinc deficiency is the existence of iron deficiency that leads to anemia, which is a problem for individuals with iron deficiency, and the metabolism of vitamin A depends on the availability of some of these micronutrients.

Conclusions

Can we begin to draw any conclusions as to why micronutrient deficiencies stubbornly persist in the face of income growth? By analyzing the challenge throughout the food system, it quickly becomes apparent that at each level—the upstream producer end, the downstream consumer end, and the market intermediation in the middle—there exist factors that both ameliorate and aggravate micronutrient deficiencies in diets. Because severe micronutrient deficiencies are associated with a range of irreversible cognitive and physical effects that can cause chronic conditions of ill health and poverty, the returns are high to improving our understanding of how and where to intervene in food systems in order to address persistent micronutrient deficiencies.

At the upstream end of the food system, soil deficiencies seem a very real problem, which points both to the prospect of fertilizers (and irrigation) and post-harvest fortification as paths to augment supply, as at least 90 percent of the food consumed in Africa is grown on the continent. Current debates about fertilizer policy are strikingly silent on the topic of fertilizers' micronutrient content, however. Biofortified foods hold promise for increasing certain micronutrient levels, but it remains to be seen how rates of adoption and disadoption, as well as marketability of adopted foods, shape their impact on human health. Increased attention to these micronutrient issues in agricultural technology development is, however, a promising improvement on the Green Revolution era.

Farm-level solutions, however, may be less cost-effective for an increasingly urban population. Improvements in market intermediation hold considerable promise, especially if they are used in conjunction with a drive to preserve perishable foods' mineral and vitamin content, such as cost-effective fortification of products that are difficult to get into foods through fertilizers or biofortified crop varieties. The tremendous success of salt iodization in sharply reducing cretinism, as well as milder forms of IDD, offers encouragement that low-cost interventions can remedy dietary nutrient shortfalls that stem fundamentally from minerals lacking in native soils.

But with the continent urbanizing rapidly and enjoying much faster economic growth than before, managing consumers' nutritional transition is
equally important. Consumer education and simple policy instruments for nudging consumers toward healthy food choices (e.g., using subsidies or taxes to change relative prices, school meal menus) offer possible solutions, albeit inconclusively tested in Africa.

The lack of any integrated assessment of alternative intervention options to combat mineral and vitamin deficiencies is one of the main stumbling blocks to mounting a serious effort to accelerate the reduction of micronutrient deficiencies as incomes grow in Africa and other low-income regions. The research and donor communities must come together to begin a more systematic assessment of (1) where micronutrient deficiencies are severe and widespread; (2) the root sources of these deficiencies for distinct subpopulations—especially those most vulnerable to falling into nutritional poverty traps: pregnant and lactating women, infants, and young children; (3) the comparative cost-effectiveness of alternative approaches to remedy these deficiencies; and (4) appropriate targeting rules for interventions to assist priority subpopulations. This sort of systematic, integrative, cost-effective solutions-oriented approach to addressing the micronutrient deficiency challenges of African food systems would fit with and honor the laudable policy-oriented research tradition of Per Pinstrup-Andersen.

Acknowledgments

The authors thank Joanna Barrett for excellent research assistance and Anne-Marie Ball, Miguel Gómez, Dennis Miller, Per Pinstrup-Andersen, and Ross Welch for helpful conversations that have helped shape this chapter, as well as David Sahn and two anonymous reviewers for helpful comments on an earlier draft. All remaining errors are solely our responsibility.

Notes

1. For each indicator, log prevalence is regressed on log GNI via ordinary least squares, and then predicted log prevalence is graphed over GNI. GNI data are either for 2000 or 2009, as appropriate to the time period of the indicator.
2. The World Bank currently classifies countries as low income if annual GNI per capita is $1,035 or less, and middle income if annual GNI per capita is $1,036–$12,615.
3. Relatedly, the nutrition transition is also associated with an epidemiological transition characterized by decreasing levels of infectious diseases and a rise in chronic (non-communicable) diseases (Delisle et al. 2011). The four primary types of non-communicable diseases are cardiovascular diseases (like heart attacks and stroke), cancers, chronic respiratory diseases (such as chronic obstructive pulmonary disease and asthma), and diabetes.

References

4. Zinc content is also fairly high in nuts, seeds, legumes, and whole-grain cereals.

5. While Table 3.1 displays only the minerals iron and zinc, the FAO food composition table from which these data are drawn contains many other minerals: copper, manganese, calcium, etc. Processing reduces levels of the other minerals, just as it reduces iron and zinc content.

6. Until his retirement, Ross Welch worked as a plant pathologist and the Lead Scientist at the US Department of Agriculture’s Agriculture Research Service (USDA-ARS), the Robert W. Holley Research Center for Agriculture and Health, located on the Cornell University campus. He was also a Professor of Plant Nutrition within the Department of Crop and Soil Sciences at Cornell University. Dr. Welch was one of the first scientists in the United States to study human-to-soil micronutrient transmission, beginning work on the topic in the 1960s. He is still one of the leading experts on the phenomenon today.

7. Biofortified foods are theoretically designed to be stable across many generations, unlike hybrid seeds that must be purchased afresh each season in order to maintain desired qualities.

8. Anne-Marie Ball is the country manager for HarvestPlus in Uganda. She joined HarvestPlus in 2006 to lead the Reaching End Users Orange Sweet Potato Project, which introduced biofortified sweet potatoes to farmers across Uganda between 2006 and 2009.

References

Micronutrient Deficiencies in African Food Systems

Micronutrient Deficiencies in African Food Systems

Micronutrient Deficiencies in African Food Systems

Christopher B. Barrett and Leah E. M. Bevis

4

The Internationalization of Obesity Epidemic

The Case of Sugar-Sweetened Beverages

Malden C. Nesheim and Marion Nestle

Introduction

The prevalence of overweight and obesity markedly increased from the late 1970s to the early 1990s, reaching 15 percent of the adult population of the United States. This rise in obesity led to a significant increase in body mass index (BMI), which is calculated as weight in kilograms divided by height in meters squared. According to the Centers for Disease Control and Prevention (CDC), the most recent figures from 2009–10 suggest that about 25 percent of adults in the United States are obese. Men and women, as well as children and adults, are affected by obesity, and the prevalence of obesity continues to rise in many countries.

During this period, obesity tripled among children, such that 15 percent of children in the United States are classified as obese (Ogden et al. 2012). In low-income countries, the prevalence of overweight (Fryar et al. 2012) and obesity has also increased. The prevalence of obesity in children in low-income countries has been found to be as high as 30 percent in certain populations. The United States is not alone in experiencing this epidemic. The World Health Organization (WHO) and the Food and Agriculture Organization (FAO) have identified obesity as a global health crisis, with obesity rates increasing rapidly in many parts of the world.