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Abstract

Advances in remote sensing and machine learning enable increasingly
accurate, inexpensive, and timely estimation of poverty and malnutrition
indicators to guide development and humanitarian agencies’ programming.
However, state of the art models often rely on proprietary data and/or deep or
transfer learning methods whose underlying mechanics may be challenging to
interpret. We demonstrate how interpretable random forest models can produce
estimates of a set of (potentially correlated) malnutrition and poverty prevalence
measures using free, open access, regularly updated, georeferenced data. We
demonstrate two use cases: contemporaneous prediction, which might be used for
poverty mapping, geographic targeting, or monitoring and evaluation tasks, and
a sequential nowcasting task that can inform early warning systems. Applied to
data from 11 low and lower-middle income countries, we find predictive accuracy
broadly comparable for both tasks to prior studies that use proprietary data
and/or deep or transfer learning methods.

1 Introduction 1

Governments and humanitarian agencies devote considerable resources towards 2

poverty and malnutrition reduction efforts. One key factor in the effectiveness of such 3

efforts is the accuracy with which poor and malnourished populations can be 4

identified. Accurate identification of poor or malnourished populations in space and 5

time serves multiple purposes [1]. Nowcasting - i.e., using current observations of 6

predictive features combined with past observations of the poverty or malnutrition 7

outcome(s) of interest - can help with geographic needs assessments and targeting, as 8

well as provide baseline measures for impact evaluation of interventions. 9

Contemporaneous prediction - i.e., estimation of locations not covered in standard 10

household surveys - can fill in the gaps in survey evidence, generating poverty maps 11

for geographic targeting of interventions and to inform ongoing monitoring and 12

evaluation activities. The more precise and interpretable the estimates, and the more 13

parsimonious and inexpensive the data demands of the model, the greater the 14

likelihood that agencies can employ such methods to accurately target and evaluate 15

interventions to address agricultural, economic, political, or weather shocks that might 16

otherwise thrust vulnerable groups into poverty traps or famine [2, 3]. 17

18

To inform aid targeting, monitoring and evaluation efforts, agencies have 19

historically drawn data mainly from detailed household surveys, such as the 20

large-scale, nationally-representative Demographic and Healthy Surveys (DHS) or 21

Living Standards Measurement Study (LSMS) programs. Such surveys are, however, 22

expensive and time-consuming, and may systematically omit subregions that are 23

harder or more dangerous to physically access, despite the severe poverty and 24

malnutrition prevalence often endemic to such locations. Moreover, high-quality, 25

large-scale surveys are typically fielded only once every several years, and are generally 26

statistically representative of the population only at relatively large (e.g., provincial or 27

regional) scales under standard sampling protocols. Although higher frequency 28

surveys can improve the timeliness of survey coverage, this often comes at the cost of 29

spatial and survey detail [4]. While enormously useful, the shortcomings of these 30

survey-based estimation techniques for up to date or forward-looking poverty and 31

malnutrition prevalence can ultimately hinder the development of timely and effective 32

development and humanitarian programming, especially in circumstances where rapid 33

response is needed. 34

35
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Recent advances in remote sensing (RS) and machine learning (ML) offer 36

tantalizing prospects to resolve some of these shortcomings by providing accurate, 37

cheap, and timely indicators of poverty and malnutrition status, at high 38

spatio-temporal resolution, and the means to translate these data into actionable 39

predictions for policy. Most of the recent literature applying statistical and ML 40

methods to predict poverty and malnutrition status focus on the contemporaneous 41

prediction case, which bears important similarities to the well-established poverty 42

mapping literature, which is in turn based on small area estimation methods [1, 5–7]. 43

44

More recently, Jean et al. [8] pioneered the use of deep learning methods, and in 45

particular convolutional neural networks trained in conjunction with transfer learning 46

methods and RS data, to identify nationwide poverty incidence at high spatial 47

resolution (i.e., village or county level). Their and subsequent innovations promise 48

much lower data costs and more current estimates than conventional poverty mapping 49

methods that rely on household surveys and census data alone. The past few years 50

have brought many useful refinements of these methods, alongside variations in precise 51

statistical methodology and target outcome [9–18]. 52

53

Although famine early warning system developers have over the last decade made 54

heavy use of RS data measuring weather patterns and vegetation health alongside 55

manually collected food price data as key information sources in qualitative 56

models [19,20], they have made limited use of statistical models to forecast future or 57

even nowcast current poverty or malnutrition status. Exceptions to this general rule 58

include Mude et al. [21], Yeh et al. [13], and Tang et al. [22]. Mude et al. [21] use 59

several years of monthly anthropometric and remotely sensed vegetative and climate 60

data to predict children’s mid-upper arm circumference in northern Kenya at the 61

community level (roughly equivalent to DHS survey clusters) using multivariate 62

regression methods, while Yeh et al. [13] and Tang et al. [22], apply deep learning 63

methods to predict temporal changes in household poverty measures using 64

multispectral satellite imagery and RS vegetative indices respectively. 65

66

Ongoing challenges in this fast-moving field include the development of rigorous 67

methods that can produce accurate and timely predictions of poverty and 68

malnutrition status using open access and near-real time data, to assess how the 69

quality of these predictions change when moving between contemporaneous prediction 70

and forecasting/nowcasting, and to identify the types of RS data that are most 71

valuable for such predictions. This paper engages with these challenges by 72

demonstrating how free, open access, regularly updated, georeferenced data can be 73

analyzed using interpretable random forest models to provide estimates of a set of 74

malnutrition and poverty indicators, with accuracy broadly comparable (in some 75

cases, perhaps superior) to estimates based on deep learning methods. 76

77

We demonstrate this for two use cases: a) contemporaneous mapping of poverty 78

and malnutrition indicators, i.e., contemporaneously predicting prevalence at both 79

surveyed and unsurveyed locations within a given country and survey year, and b) 80

early warning, or nowcasting near-future prevalence levels based on historical 81

observations and current RS data. Consistent with prior findings, we find it is much 82

easier to predict the prevalence of asset poverty than of child malnutrition 83

indicators [10], and find early warning to be more challenging than contemporaneous 84

prediction [13]. Because poverty and malnutrition indicators are typically correlated, 85

we also examine whether multivariate methods, which predict several indicators 86

simultaneously, could enhance poverty and malnutrition prediction, and find mixed 87
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results. In some but not all cases, the accuracy of predictions of multiple indicators 88

modestly exceeds that of predicting each independently. 89

90

In explaining poverty and malnutrition prevalence, we find that geographic 91

variables that are unlikely to change much over just a few years have the greatest 92

explanatory power, followed by vegetation and climate data. Although conflict and 93

food price shocks elicit considerable attention, we find they contribute relatively little 94

to the prediction of malnutrition and poverty indicators. As a final contribution, we 95

also provide our full set of training and testing data in the hopes that its availability 96

might further global efforts in poverty and malnutrition prediction. 97

2 Data description 98

We focus on data from eleven USAID Feed the Future (FTF) priority countries: 99

Bangladesh, Ethiopia, Ghana, Guatemala, Honduras, Kenya, Mali, Nepal, Nigeria, 100

Senegal, and Uganda. In feature selection, we restrict ourselves to publicly available 101

data so as to represent what might be feasible for agencies unable to invest scarce 102

resources in data collection or procurement. We note that although publicly available 103

data have become increasingly plentiful, curation of standardized, spatially and 104

temporally matched, regularly updated data remains an undersupplied public good. In 105

this section we describe our data sources before discussing pre-processing in the next 106

section. Links to all data sources considered in this work can be found in Table S5. 107

We inform our choice of features based on variables shown in a range of prior 108

studies [5–7,19] to have significant power in explaining geographic patterns of poverty 109

and/or malnutrition, and consider in particular location/remoteness, meteorological, 110

vegetative, market food price, and conflict data. 111

2.1 DHS malnutrition and asset poverty data 112

Our key poverty and malnutrition outcome indicators come from Advancing Research 113

on Nutrition and Agriculture (ARENA) [23] aggregated DHS data or directly from the 114

DHS [24]. ARENA is a Bill and Melinda Gates Foundation funded effort to ”close 115

important knowledge gaps on the links between nutrition and agriculture”. To that 116

end, the ARENA project has created, and made freely available to the public, a 117

database that combines DHS nutrition data with georeferenced agricultural and 118

geographic data matched to the DHS data, which have modest randomized offsets to 119

ensure respondent anonymity. The DHS offers repeated, internally comparable, 120

nationally representative cross-sectional data on the health, welfare, and nutrition of 121

households and individuals across 90 countries. The sample size, country, and dates of 122

the DHS data we extracted from both ARENA and DHS are detailed in Table S6. 123

124

We extract from DHS and the ARENA aggregates cluster or enumeration area (EA) 125

level estimates of poverty and malnutrition prevalence. Each EA corresponds to a 126

roughly 10 km squared region, whose location is reported as the centroid of the EA 127

plus a random 10 km offset designed to protect anonymity. Each of our outcomes are 128

weighted by household survey sampling weights (with the exception of the data on 129

women’s underweight BMI, which was weighted with individual survey sampling 130

weights), and we consider in particular the following five outcomes: 131

1. Asset poverty: households in the poorest quintile of the asset-based comparative 132

wealth index, defined as an asset index score ≤ -0.9080 (FTF 2018); 133
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2. Child stunting: children under �ve years of age whose height-for-age z-score is< 134

-2.0 standard deviations below the median on the World Health Organization 135

(WHO) Child Growth Standards; 136

3. Child wasting: children under �ve years of age whose weight-for-height is< -2.0 137

standard deviations below the median on the WHO Child Growth Standards; 138

4. Healthy weight: children under �ve years of age whose weight-for-height falls in 139

the interval [-2.0,2.0] standard deviations from the median on the WHO Child 140

Growth Standards; 141

5. Underweight women: those ages 15 to 49 whose body mass index (BMI)< 18.5. 142

While the �rst four indicators were compiled from raw DHS data by ARENA, and 143

spot checked by us through comparison to DHS summary statistics provided in each 144

DHS survey's country report, we estimated the women's underweight prevalence series 145

directly from DHS surveys.These indicators serve as our dependent variables. 146

147

In the following subsections, we detail a suite of input features (covariates) used for 148

prediction of these prevalence estimates. We also extract from DHS the physical 149

location (latitude and longitude) of each cluster EA, which allow for georeferencing of 150

other inputs to enumeration locales, noting that EA latitudes and longitudes have 151

been randomly o�set by DHS by as many as 10km to protect the identities of survey 152

respondents. We also include the date of a given survey as a feature, capturing the 153

possibility of year-speci�c shocks common to all DHS clusters in a given survey round, 154

and include an indicator variable on whether the cluster is urban or rural. 155

156

While DHS data are not designed to be representative at the cluster (EA) level, we 157

use the EA as our unit of analysis because it is the smallest unit of observation in the 158

survey for which geographic data (latitude and longitude) are available. The DHS 159

cluster sampling strategy should also yield near-representative prevalence estimates at 160

EA level. A consequence of working with EA level data drawn from a survey which is 161

not intended to be representative at this level of aggregation is increased sampling 162

noise, however, which makes the task of poverty and malnutrition prevalence 163

prediction more challenging. Working with EA level data nevertheless has the clear 164

advantage of enabling poverty and malnutrition monitoring at �ner spatial scales, and 165

providing larger sample size for model training, than national or larger, subnational 166

adminitrative unit analysis would allow. Finally, we also note that DHS EAs are not 167

�xed across surveys, meaning that the exact clusters surveyed by DHS may change 168

from year to year, further challenging prediction, and making the usage of direct 169

autoregression infeasible. 170

2.2 Physical geography covariates 171

Our �rst set of covariates describe the physical geography of locations, and are 172

intended to di�erentiate typically wealthy urban EAs from those in more agrarian or 173

rural locations. In particular, we extracted the following features from the ARENA 174

data series compilation: 175

ˆ Travel time to the nearest city with a population of 500,000 or more persons, as 176

derived from IFPRI's modeled estimates of market accessibility surface globally 177

as the travel time from household locations to the nearest city, as described 178

in [25{27]. 179

June 16, 2021 5/50



ˆ Percent tree cover data produced by [28] and presented at 1 km spatial 180

resolution; 181

ˆ Pasture coverage data present at 5 minute (� 10 km) spatial resolution drawn 182

from Ramankutty et al's [29] data series on agricultural lands in 2000; 183

ˆ Altitude measured as the pixel elevation in meters above/below sea level; the 184

data are drawn from Shuttle Radar Topography Mission data made available by 185

the NASA Jet Propulsion Laboratory and the California Institute of Technology 186

ˆ Slope, calculated by the IFPRI ARENA team as the degree gradient of steepness. 187

As the spatial sampling resolution of this data varies across features and because the 188

true EA cluster centroid has been randomly o�set to protect the privacy of survey 189

respondents, all ARENA features were resampled to a common 5 minute spatial grid 190

by the ARENA team in preprocessing. These features are then associated with DHS 191

EAs by matching to each EA the feature values that are physically closest to the EA's 192

centroid in space, and are assumed constant for the duration of our analysis. 193

2.3 Food price data 194

As demonstrated by global food price spikes during the 2007-12 period vividly 195

demonstrated, food prices can a�ect poverty and malnutrition patterns over space and 196

time, as high food prices hurt poor urban residents and rural net food consumers who 197

tend to be smallholders or landless [30]. Open access food price data may therefore be198

useful for monitoring changes in poverty and malnutrition patterns in a timely manner. 199

200

We collect food price data from the Food and Agriculture Organization (FAO) 201

Food Price Monitoring and Analysis site, which provides monthly market-level data 202

for major food commodities in most countries. Table S7 summarizes these data by the 203

number of food types monitored, number of geographic markets included, whether the 204

data re
ect retail or wholesale prices, and the �rst available observations in the time 205

series, for each country. We also display in Appendix S2 maps showing the geographic206

locations of monitored markets alongside DHS enumeration areas. Noting that both 207

the value and volatility of food prices can impact poverty and malnutrition prevalence, 208

we associate with each DHS enumeration area as features both the mean and variance209

of each food commodity price recorded by FAO within that survey's country, 210

measured in USD per kg (with the exception of Bangladesh, where prices are reported 211

per ton). Food price means and variances are computed over a one-year window prior 212

to the beginning of each DHS survey, with market locations georeferenced to the 213

centroid of that market's resident city, and with incomplete records excluded from 214

analysis. Food price features are then assigned to EAs in a spatially ordered fashion, 215

with the n-th set of food price features coinciding with those food price features 216

extracted from the n-th nearest market to the EA. 217

2.4 Solar-induced chlorophyll 
uorescence data 218

The quality and abundance of locally produced crops can have a direct impact on the 219

poverty and malnutrition status of households. Solar-induced chlorophyll 
uorescence 220

(SIF), an optical signal emanating from the core of plants' photosynthetic machinery, 221

directly encodes information about crop photosynthesis [31]. Thanks to its mechanistic 222

linkage to crop photosynthesis, SIF has the potential to be scalable for yield estimation 223

across crop types [32,33] in contrast to conventional greenness indices such as the 224

enhanced vegetation index (EVI) or normalized di�erence vegetation index (NDVI) 225
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which can require crop speci�c calibration to adequately capture vegetation growth. 226

Further, SIF is less sensitive to atmospheric contamination as it is retrieved from the 227

in-�lling of narrow Fraunhofer absorption features, than conventional greenness 228

measures estimated from broadband re
ectances [34{36]. These characteristics makes 229

SIF an ideal measure of crop yield and health, as evidenced by its e�cacy in yield 230

prediction for both US Corn Belt and Australian wheat production [37,38]. 231

232

The recent advent of satellite based RS methods for SIF measurement [39{41] 233

allows us to easily incorporate vegetative health into our model. We speci�cally use a 234

new, long-term, high-resolution, SIF time series developed by Wen et al. [42]. This 235

time series is recorded at monthly, 0.05 degree resolution, and uses data fusion 236

techniques to both downscale and merge SIF retrievals from the Scanning Imaging 237

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and the 238

Global Ozone Monitoring Experiment-2 (GOME-2) [43] to construct a long-term, high 239

resolution, precise dataset, from 2003 to 2018, which has been independently validated240

with both ground and airborne measurements. Its theory-based appeal motivated the 241

use of SIF in our predictive pipeline. Sensitivity analysis found minimal di�erences in 242

predictive performance when using SIF rather than more commomnly-used, but 243

atheoretical NDVI measures. 244

245

Given the pronounced seasonality typical to agricultural production, alongside 246

populations' adaptations to these seasonal patterns, we assume that deviations from 247

seasonally typical (mean) SIF conditions will serve as a better indicator of imminent 248

food and poverty crises than will raw values. From raw SIF readings, we thus 249

construct a set of four z-scores. These four z-scores each correspond to one of of four 250

non-overlapping, three month, periods, roughly approximating seasons. Z-scores for a 251

given location and season are computed using the sample mean and sample standard 252

deviation of all raw SIF values observed during that season, and which are within 100 253

km of the target location. For each EA, we then assign as feature the mean of the four 254

seasonal z-scores generated from the four seasons immediately prior to survey start 255

date, and whose sensing location is closest to the enumeration area in space. 256

2.5 Land surface temperature data 257

Land surface temperatures (LST) are often estimated from satellites for purposes of 258

drought and vegetation stress monitoring in agricultural systems [44]. Spatiotemporal 259

variation in LST can re
ect the variation in the physical processes of land-atmosphere 260

interactions, which can in turn a�ect both plant evapotranspiration and surface 261

moisture [45]. Historical satellite derived LST products have relatively coarse spatial 262

resolutions, e.g., 0.05 degrees or worse, and su�er from spatiotemporal bias and 263

inconsistencies when assessed at monthly scale due to the appearance of clouds and 264

infrequent observation [46,47]. 265

266

We therefore use the new, longer-term, and higher-resolution, LST series, 267

MYD11A1 (daytime), constructed from the Afternoon Satellite Aqua overpass. This 268

series contains monthly composites of daily LST observations, at 1km resolution, 269

between 2003-18 [48]. To ensure su�cient coverage, satellite pathing is controlled to 270

ensure observation times are close to the time of daily maximum LST, while missing 271

or anomalous readings caused by clouding are imputed using a physics-based, diurnal,272

temperature cycle model, which is evidently e�ective [49{51]. 273

274

As recent studies suggest that maximum temperature is a more useful predictor of 275

surface droughts, and thus shocks to poverty and malnutrition prevalence, than mean 276
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temperature at both annual and monthly scales [48,52], we extract from this series in 277

particular monthly composites of daily maximum LST for use in modeling. Again 278

assuming that deviations in maximum monthly LST will be more indicative of poverty 279

and malnutrition status due to population adaptation to typical temperatures, we 280

again apply the same seasonal normalization procedure used for SIF data assignment, 281

and again assign to each EA the mean of the four maximum LST z-scores generated 282

during the four seasons immediately prior to survey start date, and which are sensed 283

closest to the EA in space. 284

2.6 Precipitation data 285

As precipitation and rainfall are intimately linked to both crop production and water 286

availability, we use monthly, 0.05 degree, precipitation data from the Climate Hazards 287

group Infrared Precipitation with Stations (CHIRPS) as a metric for water 288

availability [53]. CHIRPS data is produced based on satellite and station observations, 289

together with precipitation climatology informed imputation, as described in [54]. 290

These data have been widely validated and employed to characterize water availability 291

and detect drought, especially on the African continent [54{59]. We again use as 292

features seasonally normalized readings, and again assign to each EA the mean of the293

four CHIRPS derived z-scores generated during the four seasons immediately prior to 294

the survey start date that are sensed closest to the EA in space. 295

2.7 Con
ict data 296

Armed con
ict and political instability are well known to cause adverse shocks in food 297

security and poverty status [60]. To incorporate these phenomena, we source data 298

from the Uppsala Con
ict Data Program (UCDP) [61,62] which provides descriptions 299

of violent events, or incidents wherein \armed force was used by an organized actor 300

against another organized actor, or against civilians, resulting in at least 1 direct 301

death at a speci�c location and a speci�c date". To adhere to this de�nition, UCDP 302

data include violent events only if there are clear estimates of fatalities and a clear 303

indication of actors involved. 304

305

In preprocessing, we remove events that lack a georeference (roughly 10 percent of 306

events), or timestamp (roughly 3 percent). Because violent con
ict commonly 307

represents country-level political instability and because the con
ict data are relatively 308

sparse, we treat the con
ict data in a country-speci�c but otherwise spatially agnostic 309

framework, and associate with each given survey in a particular country the number of 310

violent events and number of resulting casualties occurring in the year prior to the 311

DHS survey start date. As many violent events are part of a more protracted con
ict, 312

these counts also include all longer (greater than 1 day) events whose terminal date 313

lies within the one-year window prior to the start date of each DHS survey. 314

2.8 Additional preprocessing 315

As a �nal stage of preprocessing, we remove any features that are missing for more 316

than 20 percent of a given test/train regime (soon to be discussed), and remove 317

datums that contain any additional missing features or outcomes. Due to occasional 318

variation in the exact commodity prices reported by FAO within each country across 319

survey years, this former decision causes the occasional omission of market price data 320

when analyzing certain DHS surveys, while the latter results in omission of the 2012 321

and 2014 DHS surveys in Senegal, where underweight female BMI data are missing, 322

alongside a small reduction in sample size. 323
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3 Methodology 324

3.1 Modeling pipeline 325

To assess whether competitive predictions for poverty and malnutrition prevalence can 326

be produced without the need for deep learning methods, we consider a random forest 327

(RF) model. Random forests are among the most commonplace ML algorithms, and 328

can be easily implemented using widely available o�-the-shelf packages in many 329

programming languages. We explore both independent RFs, which will predict each 330

poverty or malnutrition outcome separately, as well as multivariate RFs, which employ 331

joint estimation of outcomes. 332

333

As interventions targeting poverty and malnutrition prevalence are typically 334

performed at country and year speci�c levels, and due to variation in both the number 335

and meaning of food price features across countries, we assume a survey (i.e. country 336

and year) speci�c relationship between model inputs and prevalence rates. For 337

countries c = 1 ; 2; :::; 11, we denote by (x t;c
i ; y t;c

i ) 2 (R pc
; R 5) respectively our pc input 338

features speci�c to country c and country agnostic outcomes (prevalences), with 339

i = 1 ; :::nt;c counting the total number of EAs surveyed by DHS in country c during 340

year t. Our survey speci�c model for joint prediction of the �ve target prevalence rates 341

can then be written in a signal-plus-noise formulation: 342

y t;c
i = f t;c (x t;c

i ) + � t;c
i ; (1)

where � t;c
i are assumed i.i.d. across observationsi for all years and countries,t and c, 343

respectively, with mean 0, covariance � t;c . 344

345

To allow for incorporation of possible dependencies between poverty and 346

malnutrition prevalences, we model each mappingf t;c via a (multivariate) 347

Mahalanobis random forest (MRF) [63{65], which extends the traditional univariate 348

random forest model to a multivariate setting in which joint prediction of outcomes is 349

performed through the explicit inclusion of outcome dependencies that are estimated 350

in training. Prediction within the context of an MRF is a straightforward extension of 351

the traditional setting, with terminal nodes of a given tree containing as prediction the 352

componentwise mean of resident outcome vectors, while forest predictions at a testing 353

point x t;c are analogously the componentwise average over the individual predictions 354

ht;c
k (x t;c ) of each tree within the forest ensemble: 355

f̂ t;c (x t;c ) =
1
T

TX

k=1

ht;c
k (x t;c );

ht;c
k (x t;c ) =

1
jL k (x t;c )j

n t;c
X

i =1

x t;c
i � I L k (x t;c ) (x

t;c
i );

(2)

where L k (x t;c ) denotes the leaf containingx t;c in tree k = 1 : T, j � j denotes 356

cardinality, and where I A (�) is an indicator function on the set A, so I L k (x t;c ) (x
t;c
i ) = 1 357

if the i th input observation is in the same leaf as the testing point, and 0 otherwise. 358

359

The primary distinction of the MRF then comes in training, with node splits now 360

chosen via Mahalanobis distance: 361

CL (X t;c ; Y t;c ) =
n t;c
X

i =1

(y t;c
i � �yL )0� t;c (y t;c

i � �yL ) � I L (x t;c
i ); (3)
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where �yL denotes the mean response vector within leafL , and with � t;c denoting the 362

precision matrix, i.e., the inverse of the covariance matrix � t;c . The modi�ed cost 363

function (3) can then be reinterpreted as replacing the traditional variance criterion of 364

random forest regressor with a sum of variances across independent output 365

dimensions, following their decorrelation as speci�ed by �t;c . This allows for splits to 366

be chosen in a way that jointly minimizes variance across outcomes while 367

incorporating output dependency, ideally improving predictive performance by 368

leveraging outcome dependencies. 369

3.2 Hyperparameter selection 370

We set T = 2 ;000 as our forest size, then chose random forest hyperparameters of max371

tree depth (d) and feature downsampling rate (dsr) via �ve-fold cross validation on 372

training data. While this cross validation was initially performed separately for each 373

survey, and separately for both sequential and contemporaneous frameworks, which 374

will be discussed in the next section, we ultimately chose to select a single set of 375

shared hyperparametersd = 4 ; dsr = 1
3 , corresponding to the modally selected 376

hyperparameter values across all surveys and predictive frameworks, causing a 377

negligible change in performance at the bene�t of reproducibility and parsimony. 378

379

Since the error covariance matrices �t;c are in general unknown, we estimate them 380

by �rst �tting a collection of univariate random forests for each country, year, and 381

outcome, independently. Training residuals from these models were then used to 382

directly estimate � t;c , alongside its inverse �t;c , for use in Equation 3, in an approach 383

analogous to Feasible Generalized Least Squares. In testing, results from these 384

independent random forest models are then used to establish a baseline against which 385

to compare our joint model. 386

4 Results and analysis 387

We now consider two distinct predictive tasks. The �rst, which we term sequential 388

nowcasting, is intended for use in early warning systems, and considers the sequential 389

generation of near future forecasts of future poverty and malnutrition prevalence using 390

historical outcome data and current (i.e. present) inputs. The second, which we term 391

contemporaneous prediction, is intended to inform geographic targeting in poverty or 392

malnutrition interventions, or to be used for monitoring and evaluation purposes, and 393

is used when one observes outcomes in only a sample of locations, which are to be 394

generalized to a larger spatial domain based on these current survey year observations.395

Although these two tasks can use similar data and methods, we emphasize that these 396

distinct use cases are not necessarily interchangeable, and we �nd considerable 397

di�erences in predictive performance across these two regimes, underscoring the 398

importance for agencies and analysts to de�ne their intended task in modeling and 399

evaluation. 400

4.1 Sequential Nowcasting 401

To assess the ability of our model to generate near future forecasts of poverty and 402

malnutrition prevalence for use in early warning systems, we consider a sequential 403

prediction framework in which, for each country surveyed in yeart we predict poverty 404

and malnutrition prevalence during year t, which acts as our testing set, using only 405

historical training data drawn from previous DHS surveys in yearst0 < t occurring in 406

the same country, alongside RS input features from yeart. While minimally studied in 407
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the existing literature, we �nd that RFs, used in conjunction with open access data, 408

can produce relatively accurate forecasts of certain prevalence rates, with modest 409

improvements in forecast accuracy gained via our joint estimation approach, for 410

certain prevalences. 411

412

We evaluate model performance for each indicator via out-of-sampler 2 and root 413

mean squared error normalized (NRMSE) by (in-sample) observed prevalence range: 414

r 2
j = 1 �

P n
i =1 (yi;j � ŷi;j )2

P n
i =1 (yi;j � �yi;j )2 ; (4)

NRMSEj =

q
1
n

P n
i =1 (yi;j � ŷi;j )2

maxi =1: n (yi;j ) � min i =1: n (yi;j )
; (5)

where j denotes thej th prevalence j = 1 : 5 and where i denotes thei th EA area 415

considered in a given test-train framework. 416

417

Predictive performance is assessed at three levels of aggregation. At the coarsest 418

scale, we assess fully aggregate results, which are computed by pooling all predictions 419

across all surveys, displayed in Table 1. We next assess predictive performance at the 420

individual country level, wherein predictions are pooled across all surveys within each 421

country, displayed in Fig 1, and with Table 2 reporting mean country level 422

performance weighted by relative country survey size. Finally, at the �nest level of 423

aggregation, we report individual survey level performance, with results displayed at 424

length in Appendix S1. 425

Table 1. Aggregate out-of-sample r 2 and NRMSE for sequential
nowcasting, indexed by methodology and prevalence.

Child
Stunting

Child
Wasting

Healthy
Weight

Asset
Poverty

Underwt
Women

IRF r 2 0.07 -0.01 -0.21 0.21 0.31
MRF r 2 0.08 0.10 -0.04 0.21 0.29

IRF NRMSE 0.21 0.15 0.16 0.26 0.17
MRF NRMSE 0.21 0.12 0.15 0.27 0.12

Scores are computed by pooling all predictions across all surveys, with shared testing
and training folds used across all models.
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Fig 1. r 2 for sequential poverty and malnutrition prevalence nowcasting
indexed by country. (Left) Independent RF (Right) MRF. Scores are computed by
pooling predictions across all surveys within each country, with shared testing and
training folds used across all models.

Table 2. Mean country level out-of-sample r 2 and NRMSE for sequential
nowcasting, indexed by methodology and prevalence.

Child
Stunting

Child
Wasting

Healthy
Weight

Asset
Poverty

Underwt
Women

IRF r 2 0.01 -0.24 -0.39 0.12 0.11
MRF r 2 0.02 -0.04 -0.17 0.13 0.10

IRF NRMSE 0.21 0.16 0.17 0.24 0.17
MRF NRMSE 0.21 0.14 0.16 0.24 0.17

Scores are computed by taking a size weighted average of individual country level
performance, with shared testing and training folds used across all models.

426

As will be later shown, though nowcasting of poverty and malnutrition prevalence 427

appears to be a considerably more challenging task than contemporaneous prediction, 428

we note decent performance in prediction of asset poverty and underweight women 429

prevalence, in comparison to our modest predictions for child stunting and wasting, 430

while our least skilled predictions are of healthy weight children. Because healthy child 431

weight is the complement of both child wasting and obesity, and because our 432

predictions for child wasting are superior to our predictions for child healthy weight, 433

this �nding indicates that child obesity may be especially hard to predict with these 434

data and methods. This hypothesis seems in line with theoretical foundations, as 435

obesity appears strongly related to health insults in utero, lifestyle preferences, and 436

cultural environment, none of which are readily captured by any of the data we 437

use [66,67]. Alternatively, it is interesting to note in Figure S26 that the average 438

percent change across surveys in DHS prevalence rates is relatively low for 439

malnutrition indicators. Thus, an alternative explanation for our higher performance 440

in prediction of poverty relative to malnutrition prevalence is that because there is 441
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little inter-survey variation in malnutrition prevalence, the sample means of 442

malnutrition prevalences from prior survey will be reliable predictors of future 443

prevalence, and so outperforming this baseline (i.e., attaining a highr 2) will be more 444

challenging. Further support for this narrative is given by our relatively low NRMSEs 445

across all prevalences, despite weakerr 2s. This interpretation is consistent with the 446

hypothesis that most observed malnutrition in these settings is chronic rather than 447

transitory. 448

449

Joint estimation of outcomes seems to produce modest improvements in nowcasting450

of child nutritional outcomes, relative to independent RF modeling, as measured by 451

r 2, due to the clear correlation between these indicators. We also note that for both 452

independent random forest and MRF models, our relatively low NRMSEs indicate 453

that these models can produce forecasts capable of reasonably informing aid planning 454

and policy, being accurate to within roughly 10 to 25 percent of the observed range of 455

each indicator. We interpret these results as showing promise for the use of alternative 456

ML methods and open access data for early warning, and motivating joint estimation 457

as a potential direction of future work. 458

459

As evident in Tables 1 and 2, and in Fig 1, we observe a considerable drop in 460

performance, as measured byr 2, when assessing our results at more granular scales. 461

This e�ect becomes more pronounced at the even �ner survey level assessment scale, 462

detailed in Appendix S1, where our model exhibits high variance in predictive 463

performance on individual surveys, with a signi�cant deterioration in mean 464

performance. Considering these �ndings in the context of individual survey sizes listed 465

in Table S6, we believe this drop in predictive performance at �ner assessment scales 466

arises largely from extremely poor performance on a subset of three outlier surveys, 467

each of which is the �rst sequential testing year in countries with relatively small 468

sample size DHS surveys. This hypothesis is further supported by directly comparing 469

the impact of survey size on survey level predictive performance, displayed in Figure 470

S6, where we observed a clear positive association between survey size and predictive471

performance, and by noting our survey size weighted, mean, country-level performance 472

remains well above the lower tail of individual country-level performance. 473

In the context of our task, it should come as little surprise that attempting to 474

generate nowcasts from a small and several years old training set will generate 475

inaccurate predictions. This shortcoming should therefore diminish steadily as the 476

history and/or sample size of DHS surveys grow, and implies that the reliability of our 477

nowcasts depend heavily on the quality of the underlying survey data upon which they 478

are built. While this �nding indicates a shortcoming of our method relative to deep or 479

transfer learning approaches which are less reliant on sample size, it also motivates the480

need for further survey e�orts and feature collection to facilitate and enhance the 481

prediction of poverty and malnutrition prevalence via statistical methods and RS data. 482

An alternative explanation for these �ndings is that failure to incorporate spatial 483

autocorrelation in our outcome variables might degrade predictive performance when 484

moving from large scale analysis to �ner spatial domains, where spatial associations 485

exert stronger in
uence on outcome variability, resulting in worse relative �t [68]. 486

Allowing for the possibility of spatial autocorrelation of outcomes therefore seems a 487

fruitful direction for future work. Despite these �ndings, we note qualitatively similar 488

NRMSE at both aggregate, country, and survey level scales (see Tables S1,S2). This 489

suggests that our model can generate reasonably accurate predictions of key 490

malnutrition and poverty indicators at di�erent scales of analysis, even with relatively 491

sparse data. 492

493
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Despite our method's shortcomings, our results seem broadly comparable to prior 494

related works. While competing methods for sequential forecasting or nowcasting of 495

poverty and malnutrition prevalence are sparse, the most directly comparable work 496

may be Yeh et al. [13], who predict changes in DHS asset poverty over time for a set of 497

23 sub-Saharan African countries using multispectral, convolutional neural networks. 498

These authors report cluster level out-of-sampler 2 = 0 :18, with minimal di�erence 499

when predictions are assessed in aggregate or averaged over individual countries, as 500

compared to our aggregate and country-level meanr 2s of 0:21 and 0:14, respectively. 501

We emphasize however that direct comparison of results is impossible due to 502

di�erences in both the encoding of poverty status, scope of analysis, and the 503

important distinction between nowcasting and prediction of change in prevalence. 504

505

Nevertheless, this comparison seems to establish a basic credence to our results, 506

indicating that RF and MRF models can produce results competitive with those 507

generated by deep or transfer learning based methods, when applied to the right data, 508

even with infrequent observations. Given the relative ease of implementation of our 509

MRF approach and the open access to our data, this seems a comparatively 510

easy-to-implement, tolerably accurate, �rst pass method that agencies might use as 511

part of a broader early warning system. Such preliminary �ndings could perhaps be 512

usefully supplemented with proprietary data and transfer learning based approaches. 513

We also note that although we had to exclude central American countries Guatemala 514

and Honduras from our sequential prediction because they each had only a single year515

of georeferenced DHS data available, our work extends the sequential prediction of 516

poverty and malnutrition prevalence beyond sub-Saharan Africa, to Bangladesh and 517

Nepal, demonstrating that simple models of these phenomenon can be easily 518

developed and applied globally with modest accuracy which could be further improved 519

in future works. 520

521

To demonstrate how the forecasts of our MRF model could be used to provide 522

policymakers with visual, georeferenced, predictions of poverty and malnutrition 523

prevalence, Fig 2 and Fig 3 provide a visual depiction of a near future, spatial, forecast 524

for asset poverty prevalence across Nigeria in 2013, generated using 2008 DHS survey525

data, with additional nowcast maps displayed for each country in in Appendix S3. 526

Such maps are widely used in early warning systems because they provide e�ective 527

visualization tools for policymakers, and inform the spatial allocation of scarce 528

resources by logisticians [69]. When produced repeatedly over time, these maps can 529

also be used to provide baseline, midline and endline measures for monitoring and 530

evaluation purposes, and allow for estimation of poverty and malnutrition status in 531

areas where reliable survey data may be unavailable. 532

533

To indicate uncertainty or reliability in our predictions, we also report the standard 534

deviation of our predictions across each individual tree in our MRF ensemble. In the 535

case of Nigeria, we �nd our predictions to show qualitative agreement with 536

contemporaneous products developed by the Famine Early Warning System for 537

Nigeria in 2013 [70], where the northwestern and northeastern regions exhibited the 538

greatest concentrations of acute malnutrition and poverty, despite our nowcasts being 539

produced in advance of 2013 survey data. Examining Fig 3, we see that our 540

predictions seem most reliable in areas which are dense in survey coverage and which 541

exhibit minimal spatial variation in prevalence, with our least reliable predictions 542

occurring in the eastern portion of Nigeria, where survey coverage is minimal, and in 543

the north where our predictions for poverty prevalence exhibit spatial heterogeneity, 544

indicating that such regions could be a focus of future survey e�orts. 545
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Fig 2. Mean nowcasts for asset poverty prevalence for Nigeria, 2013.
Within survey r 2 is 0.56.

Fig 3. Uncertainty in asset poverty prevalence for Nigeria, 2013.
Uncertainty is measured as the standard deviation of asset poverty prevalence
prediction across each tree in our MRF.

4.2 Contemporaneous prediction 546

A di�erent, and typically easier, task is to use survey observations to predict 547

contemporaneous values for unsurveyed locations. As discussed earlier, the resulting 548

contemporaneous predictions can be very useful for monitoring and evaluation or 549

geographic targeting purposes. 550

551

We next apply our MRF approach to a cumulative, contemporaneous, predictive 552

task, wherein, for each country surveyed in yeart, all data from previous survey 553
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rounds t0 < t , along with 80 percent of the data from survey yeart, are used for model 554

training, with the remaining 20 percent of year t data held out for testing. Testing and 555

training is performed �ve times for each survey, corresponding to �ve-fold cross 556

validation across data from survey yeart, with all results reported corresponding to 557

the average score computed across all folds. 558

559

In Tables 3 and 4 we again assess our predictive results for contemporaneous 560

prediction of poverty and malnutrition prevalence via our of sample r 2 and NRMSE. 561

Again, predictions are assessed at three levels of granularity, with fully aggregate 562

results displayed in Table 3, country-level results displayed in Fig 4 and Table 4, and 563

with survey level results relegated to Appendix S1. 564

Table 3. Aggregate mean and standard deviation of out-of-sample r 2 and
NRMSE for contemporaneous prediction, indexed by methodology and
indicator

Child
Stunting

Child
Wasting

Healthy
Weight

Asset
Poverty

Underwt
Women

IRF mean r 2 0.28 0.23 0.17 0.58 0.48
MRF mean r 2 0.27 0.23 0.17 0.58 0.46

IRF mean
NRMSE

0.19 0.11 0.14 0.19 0.11

MRF mean
NRMSE

0.19 0.11 0.14 0.19 0.11

IRF std r 2 0.00 0.01 0.02 0.01 0.01
MRF std r 2 0.00 0.00 0.00 0.00 0.01

IRF std
NRMSE

0.19 0.11 0.14 0.19 0.11

MRF std
NRMSE

0.00 0.00 0.00 0.00 0.01

Scores are computed using predictions across all countries and survey years, with
mean and standard deviations calculated across 5 folds. Testing and training folds are
shared across models.
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