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Abstract 
We report the results of the first large-scale, multi-year experimental evaluation of the System of 
Rice Intensification (SRI), an innovation that first emerged in Madagascar in the 1980s and has 
now diffused to more than 50 countries. Using a randomized training saturation design, we find 
that greater cross-sectional or intertemporal intensity of training exposure to SRI has a sizable 
effect on Bangladeshi farmers’ propensity to adopt (and not to disadopt) SRI. There is significant 
spillover learning from trained to untrained farmers. We find large, positive and significant 
impacts of SRI training on rice yields, revenues, costs, and profits for both trained and untrained 
farmers in training villages. We also find strong positive impacts on various household well-being 
indicators. Despite the significant impacts on rice productivity and labor costs, we find no evidence 
of significant general equilibrium effects on rice prices or wage rates. We also find high rates of 
disadoption, and clear indications of non-random selection into technology adoption conditional 
on randomized exposure to training.   
 
Keywords: agricultural development, Bangladesh, BRAC, diffusion, innovation, learning, 
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1. Introduction 

           Technological change in agriculture drives much of the structural transformation that 

defines the process of economic development in low-income agrarian nations (Gollin et al. 2002; 

Emerick et al. 2016; McArthur and McCord 2017; Mellor 2017).  New technologies must boost 

productivity and well-being for individual farmers, and diffuse broadly through the farming 

population, if they are to generate such macro-scale effects. Economists have therefore devoted 

considerable attention to studying agricultural technology adoption and diffusion, and the 

implications for farmers’ productivity and well-being.1  

We report the results of the first large-scale, multi-year, randomized controlled trial (RCT) 

evaluation of the System of Rice Intensification (SRI), 2  an innovation that first emerged in 

Madagascar in the 1980s and has now diffused to more than 50 countries (Styger and Traoré 2018). 

A large literature on SRI – more than 1,200 journal articles to date 

(http://sri.ciifad.cornell.edu/research/) – reports widespread observational findings of dramatic 

rice yield gains, yet has drawn sharp criticism from leading agricultural scientists incredulous at 

those claims. In order to obviate lingering concerns about non-random placement and selection 

into SRI uptake we conducted an RCT of exposure to SRI training among 5,486 farmers in 182 

villages in Bangladesh in 2014-15 and 2015-16, using a multi-year, randomized saturation design.3 

We find strong evidence that greater intensity of (direct or indirect) training exposure to the 

technology induces more SRI uptake,4  higher rice yields and profits, despite also increasing costs 

of production. We also see statistically significant, sizable gains in various household well-being 

outcomes among farmers exposed to SRI training, consistent with the core claims made by the 

technology’s proponents. Given the wide geographic extent of SRI diffusion across the developing 

world without large-scale experimental evaluation, these impact findings are the paper’s primary 

contribution.  

Our results also raise several issues that merit reflection and exploration in further studies. 

First, we find no evidence of general equilibrium effects on rice prices or wage rates that might 

impact farmer outcomes due to SRI training exposure independent of the SRI adoption pathway. 

 
1 See the excellent reviews by Feder et al. (1985), Sunding and Zilberman (2002), Foster and Rosenzweig (2010), and 
Chavas and Nauges (2020) for detailed discussion of these literatures.  
2 After fielding the experiment and analyzing our data, we learned of a parallel RCT on SRI in Haiti by Michael 
Carter, Travis Lybbert, Abbie Turiansky and collaborators at UC-Davis and OXFAM. As of yet, no paper reports 
results from that field research. 
3 Given that agricultural production depends on many exogenous and largely unobservable factors, such as weather, 
disease, pathogen and pest pressure, etc. (Sherlund et al. 2002), multiple observations over time enable us to average 
out the noise in measuring yields, revenues, and costs of agricultural production, generating estimates less vulnerable 
to bias that might arise due to unusual conditions for all subjects during the experimental period (McKenzie 2012; 
Rosenzweig and Udry 2019). 
4 We use the terms ‘adoption’ and ‘uptake’ interchangeably to refer to use of the introduced SRI technology. 

http://sri.ciifad.cornell.edu/research/
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Nonetheless, we find strong evidence that training exposure has strong effects even among non-

adopters in training villages, a puzzling result that serves as a caution for studies that rely on local 

average treatment effect (LATE) estimates of a technology’s impact based on use of a randomized 

training treatment as an instrument shown to drive adoption.   

Second, despite the demonstrable average increases in rice yields and profits, as well as 

household well-being indicators, caused by SRI adoption, we find widespread evidence of 

disadoption. In principle, this could signal heterogeneous returns to SRI; but we cannot identify 

an observable source of heterogeneity.   

Third, we find strong evidence of non-random selection into technology adoption. Perhaps 

as a result, the intensity of SRI training exposure significantly affects only farmers’ propensity to 

adopt (and not to disadopt) SRI; it has no significant effect on farmers’ performance with the new 

technology. This finding reinforces recent work that reframes economists’ understanding of 

technology adoption based on multi-object learning, including rational inattention models that may 

be especially pertinent to combinatorial innovations such as SRI, most natural resources 

management practices, or digital platforms, as such technologies require learning about multiple 

objects or practices at once (e.g., Hanna et al. 2014; Nourani 2019; Maertens et al. forthcoming).   

 

2. System of Rice Intensification  
 
The System of Rice Intensification (SRI) offers an exceptionally good candidate innovation for 

studying questions about technology diffusion, learning processes, and impacts among 

smallholder farmers. SRI was originally developed for smallholder farmers in Madagascar in the 

1980s. It requires neither a new seed variety nor additional purchased inputs such as chemical 

fertilizers. Rather, SRI is a combinatorial innovation involving a suite of principles designed to 

increase rice yields by changing the management of the plants, soil, and water.5 In that sense, some 

consider SRI a “system” rather than a “technology” because it is less a fixed set of specific 

practices (e.g., transplant seedlings 12 days after nursery germination) than a package of principles 

(e.g., transplant seedlings early) for farmers to test, modify, and adopt as they deem appropriate to 

their specific circumstances (Stoop et al.  2002).6 This typifies many technologies farmers – and 

others – consider, as reflected in the literature’s growing emphasis on new technologies emerging 

 
5 For a brief introduction to SRI, see http://sri.ciifad.cornell.edu/aboutsri/origin/. A large online library of studies on 
SRI is available at http://sri.ciifad.cornell.edu/research/.  
6 The distinction between broad principles and specific practices implicitly acknowledges heterogeneous conditions 
that may require customizing specific practices to particular farmers’ context in order to adhere to the underlying 
principle(s) of the innovation. Agricultural and natural resources management researchers are therefore increasingly 
shifting from studying and promoting specific practices to broader principles instead (Stevenson et al. 2019).  

http://sri.ciifad.cornell.edu/aboutsri/origin/
http://sri.ciifad.cornell.edu/research/
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by combining components from existing practices (Weitzman 1998, Arthur 2009, Varian 2010).  

The core SRI principles involve early, careful transplanting of single seedlings with wider 

spacing into fields that have careful water management but are not continuously flooded, as well 

as soil that has more organic matter and is actively aerated, often using simple mechanical weeders. 

Practices that adhere to these principles seem to improve the growth and functioning of rice plants’ 

root systems and to enhance the number and diversity of the soil biota that contribute to plant 

health and productivity (Stoop et al. 2002; Uphoff 2003; Randriamiharisoa et al. 2006), although 

the exact bio-physio-chemical mechanisms behind the claimed performance improvements remain 

poorly understood by agricultural scientists. Some agronomists hold that SRI merely represents 

good agronomy: full use of organic inputs, regular plant geometry, judicious use of water, good 

weed control, etc., thus the label really just reflects best management practices, not a new 

technology (McDonald et al. 2006). Indeed, the use of organic fertilizers, alternate wetting and 

drying (AWD) water management, and mechanical weeders are common recommendations, not 

unique to SRI. Each of those practices existed already (at varying prevalence levels) in our 

Bangladesh survey villages. The most distinguishing features of SRI are three practices: (i) early 

transplanting, of (ii) a single seedling per spot, with (iii) much wider spacing. Those were novel 

in our study sites and differentiate SRI from other agronomic practices already in use.  

We adapt the approach taken by BRAC through its own SRI experimentation over the prior 

several years elsewhere in Bangladesh.7 SRI is most appropriate during the Boro season (January-

June), when irrigation management is easier. Heavy rainfall during the Aus/Aman season (April-

August) makes careful AWD water management harder. As Boro coincides with winter, when 

plants grow more slowly, BRAC recommends transplanting seedlings when they are much 

younger than the local convention, at about 20 days rather than 40-50 days, but a bit later than is 

typically recommended in SRI systems elsewhere (10-15 days). The basic SRI principles and 

specific practices advanced by BRAC in Boro season are: (1) transplanting younger (20-days-old) 

seedlings; (2) transplanting 1-2 seedlings per hill; (3) wide spacing of transplanted seedlings (25 

 
7 BRAC previously worked on SRI in two other sub-districts of Bangladesh, including a pilot project in association 
with Cornell University, on a small scale (among just 80 farmers). BRAC provided interest free credit (and in some 
cases grants) to farmers who agreed to adopt SRI. However, BRAC used a ‘block’ approach in which all farmers with 
neighbouring plots of lands within a village needed to agree to cultivate using the SRI approach. These blocks were 
typically large, 20-30 acres in size, and blocks often contained 50 or more farmers. Yield gains were observed, but it 
proved difficult for BRAC to convince such a large number of farmers to coordinate, especially around water 
management, so as to practice SRI (Karmakar et al. 2004). Further, other trials in Bangladesh concluded existing best 
management practices outperformed SRI (Latif et al. 2005). BRAC therefore wanted to change this approach, as its 
prior efforts seemed neither financially sustainable nor effective. The approach we developed with BRAC, described 
in section 3, differs dramatically from its prior design. We did follow, however, the SRI principles that BRAC 
validated during these prior several years of experimentation elsewhere in Bangladesh. None of the control or 
treatment villages in our study were previously involved with BRAC efforts to promote SRI, nor with any other SRI 
promotion activities of which we are aware.  
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× 20 cm); (4) providing organic matter amendments (e.g., compost, manure) to the soil; (5) 

following the AWD method of irrigation; and (6) mechanically weeding at regular intervals. The 

first three practices define SRI uptake as implemented in this study, with findings robust to 

different precise ways of measuring uptake, as we explain below. 

Although SRI was first developed in Madagascar in 1983, not until the late 1990s and early 

2000s did the proliferation of SRI across Africa and Asia prompt agricultural scientists to study 

the agronomy of SRI (Stoop et al. 2002). SRI has spread widely, to more than 50 different African 

and Asian settings, with strong backing from major international agencies such as Africare, 

OXFAM, WWF, and the World Bank. In a recent large-scale project across multiple countries in 

West Africa, more than 50,000 farmers were induced to try SRI (Styger and Traoré 2018). A large 

number of observational studies, and some researcher-managed (not farmer-managed) 

experimental trials find SRI adoption associated with significantly higher yields, from 32-80 

percent, and increased rice profits, even reduced water use and greenhouse gas emissions (Stoop 

et al. 2002; Barrett et al. 2004, Moser and Barrett 2006; Sinha and  Talati 2007; Styger et al. 2011; 

Islam et al. 2012; Noltze et al. 2013; Takahashi and  Barrett 2014; Gathorne-Hardy et al. 2016; 

Styger and  Traoré 2018). Remarkably, however, there does not appear to be any prior large-scale 

experimental impact evaluation of SRI.  

Despite widespread geographic diffusion of SRI and repeated observations of strong 

outcomes with the method, the mainstream rice breeding community has remained vocally 

skeptical about the productivity gains attributable to SRI (Doberman 2004; Sheehy et al. 2004; 

Sinclair and Cassman 2004; Sheehy et al. 2005; McDonald et al. 2006). Indeed, criticisms of SRI 

by distinguished rice experts have been remarkably scathing, casting serious doubts on the veracity 

and replicability of SRI proponents’ observational claims. Critics frequently decry the absence of 

experimental evidence from a large sample of farmers cultivating their usual fields, as distinct 

from purposively-collected samples, trials on experiment station plots, or observational data of 

non-random, natural diffusion processes. These “rice wars” led to calls for careful empirical work 

to assess the uptake and performance of SRI (Glover 2011).  

Given the gains from SRI in observational data, one big puzzle concerns the surprisingly 

high rates of disadoption also observed after farmers have tried the method. For example, only 25 

percent of rice farmers adopted SRI in the rural Madagascar context where it originated, and 40 

percent of those farmers subsequently ceased using the method (Moser and Barrett 2006). A 

common hypothesis is that disadoption arises because farmers face heterogeneous returns to SRI, 

leading to limited farmer experimentation by those who ex ante believe they might gain from SRI, 

and predictable disadoption by those dissatisfied with SRI’s overall performance for them ex post 
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of adoption. Another candidate explanation is that because SRI is a knowledge-intensive 

innovation encompassing a suite of principles and practices that farmers must adapt to their 

specific context, it can be difficult to learn. The learning challenge may be compounded if, at least 

initially, SRI proves more time-intensive than conventional rice cultivation methods (Moser and 

Barrett 2003, 2006; Berkhout and Glover 2011). Still another candidate explanation is that the 

AWD method of irrigation requires careful coordination of water management among farmers 

cultivating adjacent plots. Our data let us test the first two of these – and we find no support for 

either claim – but we lack the data necessary to test the irrigation coordination hypothesis. 

 

3. Experimental design  

The RCT was conducted in 182 villages across five districts8 in two successive years (2014/15 

and 2015/2016) during the Boro rice seasons. We used a multi-stage randomization in year 1 

(2014/15). First, 120 villages were selected randomly for training to introduce farmers to SRI; the 

remaining 62 villages served as controls and received no SRI training. BRAC already operates in 

these villages for other activities, so is a well-known and respected organization in all of the survey 

communities.9 SRI had not been practiced in any of these villages, nor in neighbouring villages.  

While the SRI intervention was coordinated by BRAC’s Agriculture and Food Security 

Program (AFSP), the research reported here was implemented by BRAC Research and Evaluation 

Division (RED), established in 1975 as an independent research unit within BRAC, expressly 

tasked with conducting a credible, independent evaluation of BRAC interventions free of conflicts 

of interest (Chowdhury et al. 2014).10  

At the very beginning of the research program RED conducted a census before the 2014 

Boro season to list all farmers in the sample villages who cultivated rice in the previous Boro 

season, and owned at least 0.5 but not more than 10 acres of land.11 We then selected 30-40 farmers 

randomly from each village, including from the control villages, for the baseline survey.12 In total, 

we surveyed 5,486 farmers, 1,856 from the control villages and 3,630 from the treatment villages 

(Appendix Table A1). The second stage randomization involved selecting farmers randomly for 

 
8 The five districts are Kishoreganj, Pabna, Lalmonirat, Gopalgonj and Shirajgonj. 
9 BRAC works across all of Bangladesh, offering a range of education, health, microfinance, skills training and legal 
support services. 
10 RED facilitated the evaluation of BRAC’s well-known ultra-poor (Bandiera et al. 2017), and tenant farmers credit 
programs (Hossain et al. 2019).  
11 Farmers with less than 0.5 acres of land were excluded as they are usually seasonal farmers. Those with more 
than 10 acres are considered land rich in this context and not part of BRAC’s target clientele.  
12 In case of a few very large villages, we divided the village into two or more paras/neighborhoods for both the 
baseline survey and the training. We surveyed only one neighborhood from each such village such that the farmers 
are geographically close to each other, mimicking more typical village settings.  
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SRI training within each of the 120 treatment villages. The SRI training took place just before the 

season started each year (during November-December of 2014 and 2015). In the first year, BRAC 

provided training and information on SRI following its standard farmer training curriculum model.  

The number of farmers trained within each treatment village varied randomly following a 

randomized saturation design that generates experimental variation in the (cross-sectional) 

intensity of within-village-and-period exposure to treatment among treated farmers and villages. 

We randomly varied the number of farmers trained between 10 and 30 (Appendix Figure A1), so 

that the fraction of sampled farmers in training villages ranges from 25-80 percent, averaging just 

over 60 percent of the sample farmers in training villages. Randomized saturation can help identify 

spillover effects from the treated to the untreated (Baird et al. 2018), although as we show, it can 

also affect the treatment effect on the treated. In total, 2,226 sample farmers received the 

standardized SRI training in 2014. Another 1,404 reside in treatment villages but did not receive 

BRAC SRI training (Appendix Table A1).13, 14     

Following the selection of farmers for training, local BRAC AFSP field workers and RED 

enumerators visited the farmers’ homes and presented them with a letter from BRAC inviting them 

to a one-day SRI training. The farmers were also briefly informed orally about the purpose of the 

training. All farmers received a small payment (BDT 300≈4 USD) to participate in the training, 

worth slightly more than the average daily wage.15 The training content was standardized across 

villages, involving both oral and multimedia presentations, including a video demonstrating the 

principles and practices of SRI used in other areas of Bangladesh, and interactive question-and-

answer sessions to clarify the practices and principles. The trainers were existing AFSP 

agricultural officers trained by agricultural scientists who had previously worked on SRI elsewhere 

in Bangladesh.16 The trainers were supported by RED enumerators and AFSP field workers in 

conducting the training session and the pre- and post-training interviews, while all other surveys 

(census, baseline, midline and endline surveys) were done by RED enumerators.  

The third stage randomization occurred in the second year, generating experimental 

variation in the (intertemporal) intensity of exposure among treated farmers and villages. In 

2015/16 (year 2) AFSP repeated the training only in half (60) of the treatment villages, selected 

 
13 The random selection of villages and farmers was done by computer using STATA to make sure the randomization 
was conducted blindly without any influence of BRAC AFSP officials. 
14 The treatment villages were also divided equally into different categories to incentivize (or not) farmers to refer 
future trainees. For more details on the referrals experiment, see Fafchamps et al. (2020a, b), which focus on peer-to-
peer dissemination in networks, not the agronomic or economic outcomes of the SRI training RCT.   
15 In addition, the farmers were given lunch, refreshments and snacks for the day. All farmers who attended the training 
were also given a certificate from the BRAC in recognition of their participation in the training. 
16 These scientists previously worked at the Bangladesh Rice Research Institute (BRRI), whose experience with SRI 
is documented in Latif et al. (2005). 
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randomly from the 120 year 1 treatment villages, inviting all (and only) the farmers who were 

offered training in year 1. Year 2 training consisted of two one day sessions. In the first session, 

case studies on successful adoption from first year of intervention were discussed. The session 

also included discussion with local farmers about the training in year 1 and rice cultivation 

practices as well as constraints that affected their decision to adopt (or not adopt) SRI in year 1. In 

the 2nd session, AFSP trainers provided the exact same training as in year 1, and tried to ensure 

farmers clearly understood the key principles and practices of SRI. In the remaining 60 villages 

treated in year 1, there were no follow up training or information sessions. No training or 

information about SRI was provided in the control villages in either year.  

The experimental design involves randomization of villages into treatment and control, 

and then of farmers into treated and untreated within treatment villages, coupled with randomized 

saturation within treated villages, and randomized repetition of training for a second year. This 

enables us to estimate the causal effects of SRI training (the experimental treatment) on SRI uptake 

and disadoption rates as a function of the cross-sectional and intertemporal intensity of treatment. 

This design also permits us to estimate the spillover effects of SRI training on untreated (i.e., 

within-village control) farmers within treatment villages, again as a function of cross-sectional and 

intertemporal intensity of treatment. Because we find that SRI training sharply increases the 

likelihood of adoption and decreases the likelihood of disadoption (as we discuss below), precisely 

as one would expect, and that there are spillover effects on uptake by untreated farmers in 

treatment villages, we can then use the randomized intensity of exposure as an instrument to 

estimate the local average treatment effects (LATE) of SRI uptake on rice productivity, costs of 

production, profitability and broader indicators of household well-being.  

We label the farmers that received training in both years 1 and 2 as T2 (for two rounds of 

training), and their villages as V2. The farmers that received training in the remaining 60 treatment 

villages in year 1 only we label T1 (for one round of training) and their villages V1. The surveyed 

farmers who were not selected for SRI training but reside in the V2 villages we label U2 (for 

untreated in two training rounds villages), with U1 the analogous group of untreated farmers in 

the V1 villages where SRI training occurred only in year one. The control village farmers are 

denoted C. Comparisons among these five randomly assigned groups enables causal inference.  

This two-dimensional (cross-sectional and intertemporal) randomization of intensity of 

treatment appears uncommon. Randomization in cross-sectional treatment intensity (i.e., within 

the village) generates exogenous variation in how many members of one’s social network get SRI 

training, which may enhance learning from others, social acceptability, awareness of SRI, etc. In 

the time series dimension, the randomized intensity of training manufactures exogenous variation 
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over time in sustained exposure that creates opportunities to learn through formal training and 

discussion with experts, sustained exposure to a message, a useful reminder, etc.  

Appendix Table A1 reports sample sizes in the two years of intervention. Most of the 

invited farmers who were present in the villages on the training day attended the training. Only 4 

farmers in year 1 refused to participate in the training while 3 farmers in year 2 did not attend the 

training. Thus, overall, we do not have a compliance issue with take-up or participation in the 

training program.17 There is some attrition in the sample over time, which we discuss below. 

Before beginning any SRI training, we conducted a baseline survey among all control and 

treatment households. Then, following each year’s training, after each seedling transplant period 

but still during the growing season, we conducted a short survey to observe adherence to SRI 

practices and principles. SRI adoption was determined on the basis of plot visits by RED 

enumerators who were also supported by AFSP field workers, who verified visually whether the 

farmer adopted SRI techniques on any of his18 cultivable rice plots during the Boro season. A 

farmer is considered an SRI adopter if the BRAC field officer observed that the farmer practiced 

at least three of the six key SRI practices on at least one plot of land. Note that we use the mid-

season verified observations of SRI practice, not farmer self-reports, when studying SRI adoption 

and disadoption. As a robustness check, we also use several other definitions of adoption, but find 

no qualitative differences among measures.19  

Following each year’s harvest, RED conducted a thorough survey to capture further details 

on rice inputs and output, including various measures of well-being that we discuss below. The 

outcome measures we study – other than SRI adoption or disadoption – come from the post-season 

surveys.20 Therefore, besides the baseline survey data and the mid-season checks on SRI uptake, 

we have household survey data for two more post-harvest rounds, one at the end of year 1 harvest 

(midline) and one at the end of year 2 harvest (endline).  

 
17 BRAC’s prior and ongoing presence in the study villages is both an advantage and a prospective source of bias. 
Because BRAC had previously worked extensively with these communities, albeit not on SRI, they were (and remain) 
a trusted partner. This enabled implementation of this study with very high rates of compliance, leading to the clean 
results reported in the appendix balance and attrition checks. On the other hand, an implementing organization’s prior 
relationships with study subjects can causally increase the estimated impact of an intervention (Usmani et al. 2018). 
Trust in BRAC might introduce an upward bias in uptake rates, relative to diffusion from a random source, if farmers 
place greater weight on information from BRAC than from other agencies. Likewise, upwardly biased ITT estimates 
could arise if farmers (mistakenly) perceive any quid pro quo, that if BRAC is promoting SRI a farmer had better try 
it or risk losing out on other services BRAC provides. Note, however, that if anything, that would downwardly bias 
LATE estimates of the causal impact of SRI on rice or household outcomes.   
18 We use male pronouns because all of our sample farmer respondents were male. 
19 In particular, we also use farmers’ self-assessed SRI adoption, as reported in the post-harvest survey, enumerators’ 
evaluation of the extent of SRI adoption on a scale of 0 to 100, and the percentage of cultivated rice land under SRI. 
None of these alternate measures meaningfully change any of our results.  
20 RED made multiple post-transplanting visits to check on different SRI principles that need verification at different 
times within season. The adoption (disadoption) sample size therefore differs from post-harvest survey.  
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The appendix provides evidence that the randomization was successful in both years 

(Tables A2, A3, and A4). Indeed, as shown in Figure 1, not only was there no mean difference 

between control and the four (i.e., T1, T2, U1, U2) treatment groups in rice yields at baseline, the 

distributions were effectively indistinguishable, with no stochastic dominance of any order among 

the RCT arms. Appendix Tables A5 and A6 also indicate attrition is not a significant concern.  

 

4. Empirical Strategy 

4.1 ITT and LATE estimates 

We use random selection into one of the four non-control group categories as dummy variables 

(T1, T2, U1, U2) to estimate intent to treat (ITT) effects of SRI training. The randomized saturation 

design also enables us to exploit the continuous variation in treatment intensity to estimate 

treatment effects as a function of intensity of exposure, in cross-section, time series, or both.  

Our main rice-specific outcomes of interests are SRI adoption, and yields, costs of 

production, revenue, and profits, defined as the difference between revenue and costs. SRI is 

arguably more labor intensive, and observational studies frequently suggest that SRI farmers might 

engage more family labor in rice cultivation (Moser and Barrett 2006). Since labor valuation is 

problematic in settings where most labor is not hired, we consider costs with and without family 

labor so as to ensure that findings are not distorted by unobserved heterogeneity in shadow wages. 

We first estimate the ITT effects of SRI training exposure. Let Ti1=1 if a farmer i is trained 

and lives in village j that was treated only in year 1 (V1 village), Ti2=1 if the farmer is trained and 

lives in a village treated in both years (V2 village), Ui1 = 1 if the farmer lives in a V1 village and 

was not trained, and Ui2 = 1 if he lives in a V2 village and was not treated; all variables take value 

zero otherwise. These groups are mutually exclusive by design. To estimate the ITT effect of 

offering SRI training we run the following analysis of covariance (ANCOVA) estimation21:  

 𝑌𝑌𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝛼𝛼1 + 𝛿𝛿1𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 +  𝛽𝛽11𝑈𝑈𝑖𝑖1 + 𝛽𝛽12𝑇𝑇𝑖𝑖1 +  𝛽𝛽13𝑈𝑈𝑖𝑖2 + 𝛽𝛽14𝑇𝑇𝑖𝑖2  + Π1𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  (1)                                          

𝑌𝑌𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the endline outcome of interest (e.g., SRI adoption, rice yields, cost, profits, etc.) for 

farmer 𝑖𝑖 in village j at the end of year 2; 𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the pre-intervention (baseline) level outcome; 

𝑋𝑋𝑖𝑖𝑖𝑖 includes control variables such as age, education of farmer, land size, household composition, 

and income (an imperfect proxy for liquidity constraints and risk preferences). In this and all 

subsequent regression equations, we assume the error term, 𝜀𝜀, has the usual properties, we cluster 

 
21 ANCOVA estimation has more power than more conventional difference-in-differences estimation, especially for 
outcomes with relatively low autocorrelation (McKenzie 2012). Autocorrelation estimates vary from -0.08 to 0.22 for 
our outcome measures, with the lone exception of midline-to-endline adoption (0.55), where the baseline-to-midline 
autocorrelation is necessarily zero since there was no SRI cultivation at baseline.  
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standard errors at the village level at which we sampled, and adjust for sampling weights.  

For rice-focused outcome variables – SRI adoption, yields, costs, profits – we use plot-

specific observations. We omit the plot subscripts from equation (1) because for household well-

being indicators we use household-specific observations. The parameters 𝛽𝛽12  and 𝛽𝛽14 estimate 

the two year (i.e., endline) ITT effects of directly receiving SRI training once (T1) and twice (T2), 

respectively, whereas the 𝛽𝛽11  and 𝛽𝛽13 parameters are the ITT estimates of the spillover effects of 

living in one-time and two-time training villages, respectively.22 The omitted category is control 

villages in which SRI training was not available in either round, for which Ui1 = Ui2 = Ti1 =Ti2 =0.  

Equation (1) also allows us to test if there is any incremental effect of receiving an 

additional year of training by comparing the ITT estimates between T1 and T2 farmers, i.e., testing 

the null hypothesis that 𝛽𝛽14 = 𝛽𝛽12 versus the alternate hypothesis. We can likewise investigate 

whether repeated training induces faster diffusion or improved spillover outcomes than one-time 

training by comparing U1 with U2 farmers, i.e., testing the null hypothesis that 𝛽𝛽13 = 𝛽𝛽11versus 

the alternate hypothesis.  

We also estimate equation (1) adding as an additional explanatory variable the intensity of 

treatment, represented by the fraction of farmers treated in the village. Figure A1 shows the 

number of farmers treated across treatment villages. We define the village treatment intensity (Tij) 

for a farmer i living in village j as the share of the village sample treated: 

𝑇𝑇𝑖𝑖,𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≡
𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁𝑖𝑖,𝑗𝑗
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑁𝑁𝑖𝑖,𝑗𝑗

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢         (2) 

where  𝑁𝑁𝑖𝑖,𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 refers to the number of treated sample farmers, and 𝑁𝑁𝑖𝑖,𝑗𝑗𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 refers to the 

number of untreated sample farmers in village j. Then the continuous treatment intensity variables 

are simply the product of the village-level treatment intensity and the individual group assignment, 

e.g., 𝑇𝑇2𝐹𝐹𝑖𝑖𝑖𝑖 ≡ 𝑇𝑇𝑖𝑖,𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑖𝑖2, where we use  the F suffix to indicate the continuous fraction of 

sample farmers trained in the village. Controlling for treatment status, the coefficient estimate on 

the continuous measure reflects the impact of moving from no to complete within-village 

saturation.23  

 The crucial questions in the ongoing SRI debate concern its impacts on various farmer 

productivity and well-being measures. For both practical and ethical reasons, we cannot randomize 

farmers into SRI use. The object of randomization was a standardized training intended to induce 

SRI uptake. In order to determine the causal impacts of SRI from an experiment that could not 

 
22 Because more than 99% of those randomly selected for training attended the training, the effects of treatment on 
the treated (TOT) are effectively the same as the ITT effects, so we ignore the TOT effects here. 
23  If we instead use estimates of village population – which is less precisely measured, thereby introducing 
measurement error into the exogenous intensity variable – we get qualitatively identical results. 
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randomize SRI use directly, we use the randomized treatment intensity as an instrument for SRI 

use to estimate the Local Average Treatment Effect (LATE) of SRI via the following regression:  

𝑌𝑌𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝛼𝛼2 + 𝛿𝛿2𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝚤𝚤𝚤𝚤� + Π2𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜗𝜗𝑖𝑖𝑖𝑖                                                  (3) 

where, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1 if farmer 𝑖𝑖 in village 𝑗𝑗 adopted SRI in year 2 (endline). The first-stage is 

just equation (1) with SRI adoption as the dependent variable. Equation (3) would be our preferred 

specification for estimating the impact of SRI adoption if we could confirm that randomized 

exposure to SRI training affects outcomes only through SRI adoption, i.e., that the randomized 

training exposure serves as an excludable instrument for SRI adoption. We find no significant 

general equilibrium effects of SRI training on village-level rice prices or wage rates that would 

generate an alternative mechanism for training to impact outcomes independent of SRI uptake. 

While 𝛽𝛽2  provides a valid estimate of the LATE of randomized exposure to SRI training that 

operates through the SRI adoption pathway,  our results suggest that the unconfoundness 

assumption may not hold to support interpretation of the LATE as consistent, unbiased estimates 

of the impacts of SRI adoption itself on these various outcomes. So we favor the ITT estimates 

from equation (1) as our most reliable causal estimates, along with the LATE estimates from 

equation (3), noting the important nuance of how to interpret the latter results.  

Note that a farmer could cultivate rice in more than one plot of land. He might have selected 

a particular plot suitable for SRI. The SRI plot could well differ from non-SRI plots along multiple 

unobservable dimensions. 24   We address this issue by including pre-intervention level plot-

specific yield, cost, and profit in the regression as, for example, higher quality of land of a given 

size should have a higher yield in the absence of SRI.   

Because we observe multiple plots per household,25 in discussing farmer adaptation of SRI 

principles over time and in robustness checks we also use a plot difference-in-differences (DiD) 

estimator to control for unobservables, time invariant plot characteristics. More precisely, we 

estimate a plot-level panel regression using all three waves of data (i.e., baseline, midline, endline): 

 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 + ∑ ∑ 𝜕𝜕𝑗𝑗𝑗𝑗2
𝑗𝑗=1

2
𝑡𝑡=1 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝜋𝜋𝑡𝑡 + ∑ ∑ 𝛾𝛾𝑗𝑗𝑗𝑗2

𝑗𝑗=1
2
𝑡𝑡=1 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜋𝜋𝑡𝑡 + ∑ 𝜋𝜋𝑡𝑡2

𝑡𝑡=1 + 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖       (4) 

 

 
24 Barrett et al. (2004) found that farmer and plot characteristics account for more than half of the observed yield 
difference between SRI and traditional rice plots in Madagascar. 
25 We obtained information for at most three plots of cultivable land. If a farmer cultivated more plots, we randomly 
picked three plots on which to collect the information. 65.7% of farmers have 3 plots in the sample, 21.1% have 2 
plots, and 13.2% have just 1 plot. We collected adoption, yield, input cost, and revenue data for the same plot(s) of 
land from each farmer in all three rounds. Plots were visited with farmers to verify SRI uptake and the correspondence 
of the plot to the prior round of data. 
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where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents an outcome variable of interest from farmer i cultivating plot p in village 

type j at time t, where time period refers to 2014 baseline (t=0), 2015 midline (t=1) and 2016 

endline (t=2). 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖=1 for untrained farmers in village type j=1 (one year of training) or j=2 (two 

years of training) post-baseline (i.e., 𝑡𝑡 ∈ {1,2}); 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖=1 for trained farmers in village type j=1 (one 

year of training) or j=2 (two years of training) post-baseline; 𝜋𝜋𝑡𝑡 is a period fixed effect common 

to all farmers – capturing, for example, annual average prices and growing conditions – and 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖 

is a plot fixed effect. Now the indicator variables reflect both the treatment arm to which a farmer 

– and thus his plot – was assigned (the first two characters, per our earlier notation) with the survey 

round appended as a third, numeric character. For example, U11 and U12 indicate an untrained 

farmer in a single treatment village at midline and endline, respectively.26  

In regressions estimating equation (4), 𝜕𝜕𝑗𝑗𝑗𝑗 is the ITT estimate of the impact of the SRI 

training on the outcome variable for the untrained farmers indirectly exposed to SRI in training 

villages of type j in period t, while 𝛾𝛾𝑗𝑗𝑗𝑗 is the ITT estimate of the impact of direct SRI training on 

the outcome variable for farmers randomly selected into SRI training. These estimates compare 

changes in outcomes among trained and untrained farmers residing in training villages post-SRI 

training, relative to changes among farmers in control villages, while controlling for average 

period-on-period changes. This method has the advantage of controlling for unobserved, time 

invariant (household and) plot level heterogeneity (e.g., in drainage, slope, soil type, distance from 

the home, farmer skill) that may impact productivity, costs, etc. But time-varying, plot-specific 

factors such as water availability, pest or disease pressure, etc. heavily influence productivity and 

such time-varying unobservables get amplified in the plot-level analysis (Sherlund et al. 2002). In 

addition, using plots as the unit of observation when households were sampled reweights the 

sample by the number of rice plots a sample farmer cultivates, and since the decision of how many 

plots to cultivate in rice could be endogenous to SRI training, this may introduce subtle selection 

bias into the plot-level model. We therefore focus on the ITT and LATE estimates at the household 

level, and treat the estimates of equation (4) as robustness checks.  

The other benefit of this estimation strategy is that it disaggregates the effects between 

midline – the impact of initial exposure – and endline – so as to better capture the impact of 

sustained exposure to SRI, through additional direct training to T2 farmers, or through additional 

indirect exposure via trainees and adopters in both V1 and V2 villages. Relative to the 𝜕𝜕11 and 

𝛾𝛾11parameter estimates, 𝜕𝜕12  and 𝛾𝛾12  reflect learning-by-doing and learning-from-others effects 

entirely within the village, without any further BRAC training in the j=1 villages.  By contrast, the 

 
26 We also estimate equation (4) using continuous treatment intensities in addition to the treatment dummies.  
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𝜕𝜕22 and 𝛾𝛾22 parameter estimates will include those same intra-village learning effects as well as 

any marginal benefits from the second year of BRAC training in the V2 villages. 

 

4.2 Disadoption and delayed adoption 

Our research design also allows us to study disadoption – SRI uptake in year 1 that is discontinued 

in year 2 – and persistent adoption — i.e., farmers who practiced SRI in both years 1 and 2. We 

can also identify farmers who adopted SRI only in year 2 – delayed adopters – and see how they 

differ from disadopters and persistent adopters. Foster and Rosenzweig (1995) point to the 

strategic gains from delayed adoption if one can observe neighbors’ experimentation with a new 

technology. If learning from others is cheaper than learning by doing, then farmers with less 

capacity or willingness to experiment (e.g., lower education, less financial liquidity, smaller farm 

size, etc.) may be more likely to delay adoption. Because adoption is endogenous to various 

farmer-level unobservables, we cannot make causal inferences around disadoption, persistent 

adoption, and delayed adoption, but we can examine the correlates associated with each cohort. 

We study yields, costs, farm size and farmers’ characteristics vary with persistent adoption, 

disadoption, and delayed adoption using the multinomial logit regression model: 
 

𝑓𝑓(𝑌𝑌𝑖𝑖𝑖𝑖) = 𝛼𝛼4 + 𝛿𝛿4𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛽𝛽4𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 +  𝜃𝜃11𝑈𝑈𝑖𝑖1 + 𝜃𝜃12𝑇𝑇𝑖𝑖1 +  𝜃𝜃13𝑈𝑈𝑖𝑖2 + 𝜃𝜃14𝑇𝑇𝑖𝑖2 + Π4𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖       (5) 
 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is a dummy variable indicating the status of adoption of farmer i in village j at the end 

of year 2: persistent adopter, delayed adopter or disadopter. The omitted base category is never-

adopters. The polychotomous options are mapped by the multinomial predictor function f(·) onto 

the explanatory variables. The 𝑋𝑋𝑖𝑖𝑖𝑖 vector includes the household head’s age, education, income, 

and farm size. 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  reflects baseline productivity, 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is baseline cost, since a 

farmer’s propensity to continue to practice SRI, or to delay adoption, should depend on his initial 

conditions.27, 28  We also separately run a logit regression model comparing only disadopters with 

persistent adopters, i.e., looking just at the (non-random) sub-sample of midline adopters. This 

helps identify the correlates of those who abandon the practice while their neighbors continue. 

These regressions all rely on a strong independence of irrelevant alternatives assumption, thus we 

emphasize the parameter estimates concerning disadoption and delayed adoption reflect only 

correlations not causal estimates.  

 
27 Note that we omit control villages from this regression as there was no SRI adoption in control villages.  
28 We repeated the same analysis using the continuous treatment intensity measures in equation (4) with no qualitative 
change in results, which are available by request. 
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5. Results 

5.1 Summary Statistics 

Table 1 presents midline and endline summary statistics for each treatment arm. As seen in panel 

A, SRI training caused statistically significant SRI adoption. Uptake rates at midline were almost 

identical among T1 and T2 farmers, at 49.7 and 49.2 percent, respectively, as compared to a true 

zero among the control village farmers. But SRI adoption then fell among T1 farmers by endline, 

to 38.1 percent due to disadoption (on which, more below), while adoption among T2 farmers 

increased further, to 53.0 percent. The endline difference between the two groups is statistically 

significant (p=0.00) although the midline adoption rates, when there was no difference between 

the two arms, are not significantly different.  

The same pattern holds between the U1 and U2 treatment groups, the training village 

farmers who were not themselves trained. Statistically significant spillover occurred among 

untrained farmers, as compared to control village farmers, with 7-8 percent SRI uptake at midline 

among U1 and U2 households. After a second year of training in V2 villages, U2 households 

exhibited higher SRI adoption (12.38%) as compared to U1 (8.80%) (p=0.000). Overall, trained 

T2 farmers adopted SRI on about 26% of the land in V2 villages in year 2 as compared to 21% for 

T1 farmers in V1 villages (panel B). Thus, even adopters experiment with SRI, not fully adopting 

it on all plots.29 A qualitatively identical story emerges if we use the other adoption measures. 

The extent to which farmers adhere to the SRI principles as taught varies by treatment 

exposure and intensity, but is generally low. Table 1 Panel B shows a larger percentage of (T1 and 

T2) farmers exposed to the SRI training followed each of the six rules of SRI cultivation than 

untrained (UI and U2) farmers. Perhaps most strikingly, there was negligible increase in adherence 

to practices from midline to endline by farmers in V1 villages, except for U1 farmers’ use of 

organic fertilizer and T1 farmers’ space of seedlings and mechanical weeding. This suggests 

limited adaptation through learning by doing or learning from other farmers’ initial experiences 

with SRI beyond the initial adoption decision. In V2 villages, increase in compliance from midline 

to endline was consistently stronger after a second year of training, among both U2 and T2 farmers. 

A key takeaway is that the vast majority of farmers who adopt SRI practice it on only part of their 

rice land, they only partially adhere to the principles as taught, and they scarcely update their 

practices following their initial experience unless further training occurs. The robust response at 

 
29 At endline, only 6.8% of T2 farmers and 3.5% of T1 farmers adopted SRI on all of their rice land. 
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the extensive margin to SRI training – adoption and a significant shift in rice cultivation practices 

– contrasts with the modest response at the intensive margin.   

Table 1 Panel C reports summary statistics on rice yields, revenues, cost and profits, all of 

which are significantly higher among both trained and untrained farmers in the treatment villages 

than in the control villages. The simple descriptive statistics suggest significant productivity and 

profitability impacts of exposure to SRI training, although the differences among treatment groups 

are rarely statistically significant. This suggests that the main impact of SRI training exposure 

occurs at the extensive margin, by inducing adoption, more than by impacting performance at the 

intensive margin through the enhanced learning opportunities that come from greater exposure. 

We return to this issue, and its implications for learning models, later in the paper. 

 

5.2 Estimated Effects  

SRI Adoption 

Table 2 (Panel A) column 130 reports the ITT estimates of SRI training at endline. SRI training 

appears quite effective at inducing adoption, as T1 and T2 farmers are 39 and 53 percent, 

respectively, more likely to practice SRI two years after baseline than were farmers in control 

villages. Under the defensible assumption that participation in SRI training represents more 

intense exposure to the method than non-participation does, exposure intensity clearly matters to 

uptake. Training is the main mechanism for diffusing the method as the differences between the 

treated and untreated farmers within villages (T1 vs. U1 and T2 vs. U2) are quite large – 30-40 

percentage points – and highly statistically significant. Repetition of SRI training had a positive 

effect on uptake as well – a statistically significant 14 percentage point difference in adoption 

between T1 and T2 farmers.  

There is also statistically significant spillover of SRI training to untrained farmers in the 

treatment villages, 9-12 percent among U1 and U2 farmers. The added year of training had no 

significant impact on the diffusion of SRI beyond the trained farmer cohort.  

Recall that the training sessions were only one day long, the method is relatively complex, 

and farmers had no prior exposure to SRI. Considering this, the estimated adoption impacts of SRI 

training appear quite strong and sharply increasing with intensity of training exposure, both from 

zero exposure to one training session and from one annual training to two years of training, as well 

 
30 For reasons already explained, the post-harvest survey used for outcomes other than adoption included fewer rice 
plots than did the post-transplanting survey used to determine SRI adoption. Column 1’ reports the analog to column 
1, but restricted to just the observations used for the other outcome variables. No significant differences exist between 
the results. So, we focus our discussion on the larger sample reported in column 1. 
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as between directly trained farmers and their neighbors who may pick up the practice informally 

through observation or discussion. 

The same pattern holds when we supplement the binary treatment variable with the 

continuous measure of village-specific treatment intensity, exploiting our randomized saturation 

experimental design.31 Appendix Table A7 presents the ITT estimates adding in the continuous 

treatment measure so as to test for saturation effects. The ITT estimates of training treatments are 

now the sum of the coefficient estimate on the dummy variable for that treatment arm, as in Table 

2, plus the coefficient estimate on the continuous measure multiplied by the treatment intensity (in 

the [0,1] interval). The training saturation rate has a positive but insignificant effect on uptake in 

the V1 villages – and, if anything, an insignificantly negative impact on performance (yield, 

revenue, cost or profit) measures.32 The sample training saturation rate has a very strongly positive 

impact on SRI adoption in V2 villages, however, among both the T2 and U2 households, although 

it again has no significant effect on performance with SRI. Training intensity in cross-section and 

over time appear complements, reinforcing each other in inducing uptake.  

Figure 2 offers a nonparametric look at the impact of treatment intensity on SRI adoption. 

Adoption impacts appear invariant up to or slightly beyond the sample mean/median of 0.60, after 

which point the slope of the relationship increases sharply and roughly linearly. We take account 

of this nonlinearity by adding a dummy variable indicating if treatment intensity is above 0.70, 

roughly the 60th percentile of the distribution. The results, presented in Table 3, indicate that high 

saturation rates boost uptake effects dramatically and significantly in the case of T1 farmers – 

those trained only one year – and among the U2 cohort, those farmers who were not trained directly 

but who live in villages where training occurred in both years. T2 farmers’ adoption propensity 

also increases sharply but is imprecisely estimated. 33  This reinforces the evidence of strong 

synergistic effect of cross-sectional and intertemporal intensity of exposure on uptake of 

innovations. Assuming diminishing marginal returns to learning, uptake would typically be a 

concave function in training saturation if the effect worked solely through social learning. The 

observed convex relationship between training saturation and SRI uptake appears more likely due 

to social conformity effects, consistent with prior findings from Madagascar (Moser and Barrett 

2006).  

 

 
31 Treatment intensity is necessarily zero for all farmers in control villages. 
32 Multicollinearity exists between the dummy and continuous intensity variables. All dummy-intensity pairs are 
jointly highly significant. We get qualitatively identical results using midline data (Tables A8 and A9). 
33 When we repeat this analysis with a 0.60 cut-off in treatment intensity we find broadly similar, but weaker results, 
which is consistent with Figure 2 as the kink occurs between treatment intensity of 0.65–0.70 (Table A10). 
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ITT Impacts on Rice Yields, Costs and Profits 

The ITT estimates also show statistically significant and agronomically and economically 

meaningful impacts on rice yields (14-17 percent), revenues (17-18 percent), and input costs (per 

decimal of land, 13-16 percent), resulting in profits34 that are 21-34 percent higher relative to 

farmers in the control villages, noting that rice was profitable at baseline (Table 2). Remarkably, 

no statistically significant differences exist between any of the four treatment arms. This result 

holds when we control for exogenous variation in training saturation rates, even allowing for the 

nonlinear effect observed with above-median cross-sectional training intensity (Table 3). 

Although intensity of SRI training exposure has a big, statistically significant effect on the 

likelihood of SRI adoption, it has no differential ITT impact on performance-related outcomes – 

e.g., yields, profits – across treatment arms. We come back to this important finding below.  

Since SRI training exposure increases the costs of rice cultivation, we next explore 

precisely which costs increase. These more nuanced findings might help us better understand the 

adoption and disadoption patterns we explore below. Recall that SRI principles call for increased 

use of organic soil amendments and mechanical weeders, and more frequent wetting and drying 

of plots – which requires increased operation of pumps to flood or drain fields – and that earlier 

seedling transplanting, more regular and careful water management, the possibility of more robust 

weed growth on unflooded fields, and increased harvests may increase labor demands, especially 

for the household managers of the SRI plot(s). We would therefore expect increased costs to be 

concentrated in those domains. Conversely, we might expect reduced herbicide and pesticide 

expenses due to mechanical weeding and better water management practices.  

The data exhibit precisely those patterns. As shown in Table 4, the ITT estimates (panel 

A) of the impact of SRI training exposure and the LATE estimates (panel B) clearly signal sizable 

and significant increases in family labor, irrigation and organic fertilizer costs and sharply reduced 

pesticide costs, especially among the T2 farmers most intensively trained on SRI. Other than for 

pesticide costs, however, these costs effects are not statistically significantly different among the 

distinct treatment cohorts.  

            Cumulatively, the findings reported in Tables 2-4 tell a clear story that SRI adoption 

increases significantly with the intensity of training exposure, whether measured as trained vs. 

 
34 We value unpaid household labor at village mode wage rates, but the results are qualitatively identical when valued 
at mean or median wage rates. At midline, wage data were collected for each individual worker in a sample household, 
by different types of work, including nursery bed preparation/seeding/seed treatment; land preparation; 
transplanting/sowing; irrigation/watering; weeding; applying fertilizer/pesticide; harvesting; and post-harvest 
threshing. Because the differences by task were minimal, at endline, wage data were collected only for two categories: 
the pre- and harvest/post-harvest periods. Imputed wages for unpaid family labor during were calculated based on the 
modal hired wage in the district for each type of work. The average imputed wage for midline was 301.48BDT/day 
and for endline was 313.27BDT/day. 
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untrained, trained twice versus trained once, or by village treatment intensity, and that SRI training 

has a large, positive impact on productivity and profitability indicators, even while driving up costs 

of production. Our core results all hold as well in panel regression estimates using the plot level 

difference-in-differences specification reflected in equation (4), both using the binary and 

continuous treatment intensity indicators (Tables A11 and A12). These experimental findings 

confirm the mass of observational findings of gains from SRI uptake around the world.   

 

SRI Impacts on Household Well-Being 

Previous studies based on observational data found that rice productivity or profitability 

gains associated with SRI adoption do not translate into improved household well-being, 

seemingly because SRI induced a reallocation of farm household labor from nonfarm activities to 

rice cultivation, such that the loss of non-farm income largely offsets the gains from increased rice 

productivity (Noltze et al. 2013; Takahashi and Barrett 2014).35 Our findings differ. 

Table 5 reports the ITT (Panel A) and LATE (Panel B) estimates of SRI training exposure 

on self-reported measures of savings, social status (relative to others in the village), food security 

and life satisfaction.36 Because the latter three variables are scored on five to ten point Likert 

scales, we use an ordered probit estimator and report marginal effects estimates. All the ITT point 

estimates are positive and mostly (but not all) statistically significant for treated households, as 

compared to control village households. But the expected gains are again not significantly different 

among the T1, T2, U1 and U2 farmers. 

 

LATE Estimates and General Equilibrium Effects 

Because we randomized SRI training, not SRI adoption, and less than half of trained 

farmers adopted SRI, these ITT estimates of the impacts of training necessarily underestimate the 

impacts of SRI adoption on the various outcome measures. Panel B of Tables 2 and 5 present the 

LATE estimates of SRI training exposure. The first-stage uses treatment dummies as instruments 

for SRI adoption (per column 1’ of Table 2, Panel A). We observe large and highly statistically 

significant estimated gains in rice yields (24 percent), revenues, costs, and especially profits (47 

percent), as well as on household welfare indicators (Panel B, Table 5). Those point estimates fall 

well within the range reported in the observational SRI literature summarized earlier. These are 

considerable yield and profit gains, especially from training on an innovation that requires no 

 
35 In another observational and simulation study, Gathorne-Hardy et al. (2016) find that the gains that accrue to SRI 
farming households come at the expense of landless workers. 
36 See the notes at the bottom of Table 5 for details on the construction of these variables. 
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purchased inputs.37 Although SRI induces increased demand for family labor (Table 4), the gains 

from SRI are not offset through reallocation of family labor into rice production.  

Interpretation of the LATE estimates as the causal impact of SRI adoption depends, 

however, on the exclusion restriction on the instrument, the randomized intensity of exposure to 

SRI training. A coarse way to explore the (untestable) exclusion restriction is to add interaction 

terms between each treatment arm and an indicator variable for (endogenous) SRI adoption to the 

Table 2 ITT specification. If the impact of SRI training on outcomes runs solely through SRI 

uptake, then the coefficient estimates on the uninteracted treatment indicator variables should go 

to zero and become statistically insignificant, especially given their multicollinearity with the 

interacted variables, as there should be no conditionally independent effect of SRI training 

exposure on the outcomes of those farmers who (endogenously) chose not to adopt SRI. Table 

A13 shows that, on the contrary, the coefficient estimates on the uninteracted terms change 

insignificantly from the Table 2 estimates and retain their statistical significance, while the 

interacted terms suggest negligible, if any, added impacts from SRI adoption. For this reason, we 

favor the ITT estimates as conservative, but unbiased and consistent estimates of the impacts of 

SRI training on agronomic and economic outcomes and emphasize understanding the LATE 

estimates as relating to SRI training exposure, as distinct from SRI uptake. These are the policy 

relevant parameters, as BRAC or another agency can only promote uptake through training (or 

other) interventions; it cannot directly mandate technology adoption. 

General equilibrium effects on local factor and product market prices offer the most 

obvious candidate reason why SRI training might be associated with rice yields and profits other 

than through SRI uptake. Indeed, given the significant impacts SRI training had on rice output, 

labor demand, profits and household well-being, it could plausibly affect local rice or labor market 

equilibria. If added demand for labor drives higher wage rates, or if increased rice supply manifests 

in lower rice prices, then the gains from SRI promotion might diffuse far more broadly, beyond 

just rice farmers, as was true of earlier Green Revolution technologies (David and Otsuka 1994; 

Evenson and Gollin 2003). Notably, those effects would also attenuate the estimated profit gains 

to SRI adopters, as reported in Tables 2-5. 

 Following Burke et al. (2019), we look across the treatment intensity continuum to identify 

prospective general equilibrium effects on local factor and product markets. Table 6 reports the 

ITT estimates of the impact of SRI training intensity on village-level wage rates – computed as 

the average of activity-specific village modal wage rates for land preparation, transplanting, 

 
37 We get statistically significant positive results on all outcomes when we perform the same analysis using midline 
data but using endline treatment status (Tables A8 and A9). 
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weeding, and harvesting labor – and rice prices – computed as the average price for each of several 

rice varieties available in village markets. At the median training saturation rate of 60 percent of 

the sample, SRI training has no economically or statistically significant effect on either rice prices 

or wage rates, an imprecisely estimated -4.3 and -3.0 percent, respectively, relative to control 

villages. The negative point estimate on the wage effect runs counter to what one would expect 

given the manifest increase in labor demand sparked by SRI training, reinforcing our interpretation 

of the labor market effects as effectively zero. The -1 BDT point estimate on village rice prices is 

only significant at the ten percent level and if the effect is truly negative, then our ITT and LATE 

estimates of the profit effects – and the wellbeing effects for the (majority) net rice seller farmers 

– are conservative, underestimates. Given considerable labor mobility and rice market integration 

in densely populated rural Bangladesh, the lack of any meangingful factor or product market price 

effects is intuitive. But these findings leave the apparent violation of the LATE exclusion 

restriction as an unanswered (for now) puzzle, as we cannot identify a mechanism through which 

SRI training should have affected outcomes other than through SRI adoption; yet it seems to have 

done so. 

 

5.3 Insights from Non-random Selection into SRI Uptake 

The lack of statistically significant ITT differences among treatment groups in 

productivity, profitability or well-being outcomes despite statistically significant differences in 

SRI adoption nicely illustrates non-random selection into SRI adoption conditional on training 

exposure. Simply dividing the Table 2 ITT estimates of yield impacts by the corresponding 

treatment-arm-specific ITT estimate of uptake – i.e., the group-specific indirect least squares (ILS) 

LATE estimate of impacts – generates a clear ordering, from 148 percent expected yield gains for 

U1 farmers who adopt, down to 33 percent for T2 farmers. The treatment cohort-specific ILS 

LATE estimates correlate inversely with exposure to the method through training.  

This occurs because ILS LATE estimates reflect performance impacts conditional on 

training treatment intensity. The farmers likely to adopt SRI likely differ based on the intensity of 

their exposure to training, a form of positive assortative matching in which those who benefit the 

most are the most likely to adopt for any given level of training exposure. Differences in training 

exposure afford us crucial insights into the differences among the farmers most likely to adopt a 

new technology quickly, based on limited, indirect learning through social connections, versus 

those likely to take up an innovation following more substantial, direct training exposure from 

extension agents. Given the experiment’s successful balance on observables (Tables A2-A4), the 

patterns we observe suggest that farmer propensity to adopt SRI conditional on treatment intensity 
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is strongly associated with unobservables (e.g., ambition, skill, social connectivity) that 

complement the new technology, even controlling for baseline outcomes. And we find no 

significant heterogeneity in returns to SRI conditional on observables such as land and labor 

endowments, as shown below.38 So the differences must arise from farmer (or plot) unobservables.   

Given strong selection on unobservables, greater exposure induces more farmers to adopt 

SRI, and to thereby benefit from the method, but with diminishing marginal gains from adoption. 

We can understand this is as follows. Imagine farmer productivity-enhancing unobservables as 

summarized by a scalar variable, call it ability, with a standard, unimodal distribution. Farmers at 

the upper end of the ability distribution enjoy greater gains from any new technology than do those 

further down the ability distribution. At the same time, higher ability farmers are more likely to 

learn and adopt the new technology at any level of training exposure. Their ability makes them 

quicker to identify and adopt promising technologies based on limited information. It takes fewer 

new observations – i.e., less intense exposure to the new technology – to induce adoption by 

farmers who expect to benefit more.  

The implication is that a light training intervention is more likely to induce uptake by high 

ability farmers who enjoy greater expected gains conditional on adoption, while a heavier training 

intervention will induce greater uptake by all farmer types, in particular inducing more farmers of 

moderate or lesser ability to adopt, resulting in lower expected gains conditional on adoption in 

the higher training intensity state. Randomization into training treatment arms means the 

distribution of high ability farmers should be balanced across training arms. But treatment intensity 

should induce proportionately greater uptake among farmers as their ability level falls. Increased 

training exposure thereby has a scaling effect – inducing greater adoption – but not necessarily an 

impact effect – no higher performance conditional on treatment intensity.  

This is precisely what the data show. Figures 3 and 4 plot the ordered distribution of endline 

rice profits and yield, respectively, for SRI adopters within each treatment arm. The dotted 

horizontal line shows the control group mean. The leftmost observation – i.e., the most profitable 

(Figure 3) or highest yield (Figure 4) farmer – of each group-specific schedule, and all the 

subsequent observations within that cohort, follow a clear ordering that corresponds to the extent 

of SRI training exposure. For any rank n in the outcome ordering (reflected on the horizontal axis), 

the nth farmer in a treatment arm exhibits higher rice profitability or yield as shown by the vertical 

ordering of the treatment-arm-specific outcome curves: the U1 locus lies everywhere beneath the 

 
38 The only dimension in which we observe heterogeneity of returns is with respect to pre-treatment rice yield, with 
the cost of production impacts appreciably lower for those with higher baseline yields, albeit again with no significant 
difference among treatment groups (Table A15). This seems likely to reflect farmer skill and other unobservables that 
confer higher expected gains from using the new technology conditional on exposure level. 
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U2 locus, which is itself everywhere beneath the T1 schedule, that is in turn strictly dominated by 

T2. The most productive SRI adopters who had only indirect training exposure (U1 and U2) are 

slightly less productive than those adopters who received direct training (i.e., at the leftmost edge 

of the figures). But the productivity difference between, for example U1 and T2 adopters, as 

reflected in the vertical gap between the treatment-specific curves, grows quickly as one moves 

down the ordering. We loosely interpret that ordering as an ability ranking, although it could 

equally reflect other unobservables such as social connections, land quality, etc. Greater training 

exposure boosts the likelihood of farmer adoption, but the magnitude of induced uptake increases 

as farmer ability level falls.    

The vast majority of SRI adopters outperform the control group mean. This merely reflects 

the gains attributable to SRI training that we established earlier. The endline differences between 

T2 and U2 and between T1 and U1 are large, consistent with the inference that most of the gains 

come from direct learning from the BRAC extension agents. The difference between the U1 and 

U2 farmers is negligible. Increased intensity of SRI training exposure boosts adoption by farmers 

who realize a given yield or profit level (i.e., treatment arm schedules move rightward in training 

intensity). But it does not change the average expected outcome (yield or profit or well-being) 

because expected impacts decrease in unobservable ability while greater training exposure 

probabilistically propagates diffusion further down the ability distribution.  

This can also be seen in the treatment arm-specific conditional outcome distributions. As 

shown in Figure 1, no stochastic dominance existed at baseline among the rice yield distributions 

among the control group, the directly trained, and the untrained within training villages. After 

training, the yield distributions for all four treatment arms first order stochastically dominate the 

control group, at both midline and endline (Figures A2 and A3). But no (first, second or third 

order) stochastic dominance exists among any of the treatment arms (Figures A4 and A5). The 

distribution of outcomes is effectively identical, as reflected by the ITT estimates. But increased 

training exposure sharply expands the scale of SRI uptake, as reflected in Figures 3 and 4.  

 The non-random nature of selection into SRI adoption is also apparent in comparison of 

the yield distributions of adopters and non-adopters within each treatment arm. As depicted in 

Figure 5, the endline yield distribution of SRI adopters does not statistically significantly 

stochastically dominate (at first, second or third order) that of non-adopters within any of the 

treatment arms.39 The p-values for the tests of first order dominance decrease in intensity of 

exposure to SRI training, consistent with the prior findings that greater exposure leads to slightly 

 
39 Figure A6 shows the same for midline yield. 
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greater adherence to recommended practices and thus better performance. But the fact that within 

each treatment arm these differences are not statistically significant indicates that farmers make 

reasonably rational uptake decisions based on unobservables that affect performance outcomes.  

Conditional on their unobservable-to-the-experimenter ability and the intensity of their exposure 

to the new method, farmers make reasonable adoption decisions such that as a treatment arm 

cohort, they endogenously sort into equally performing sub-groups.  

 

5.4 Disadoption, Delayed Adoption, and Farmer Heterogeneity 

The multi-year design of our experiment also permits us to study different adoption behaviors by 

farmers. More specifically, we distinguish among farmers who never practiced SRI (non-

adopters), those who adopted SRI in both post-training periods (persistent adopters), those who 

adopted in the first year but then disadopted (disadopters), and those who only adopted in the 

second year (delayed adopters). Among the 2,648 treatment village farmers for whom we have 

both year 1 and year 2 observations, 36% (313) of farmers who adopted SRI in year 1 disadopted 

in year 2 (disadopters) (Table 7).40 On its surface, this high a rate of disadoption – similar to prior 

observational SRI data (Moser and Barrett 2006) – is puzzling given the substantial expected gains 

from SRI adoption.41 Might this reflect heterogeneous marginal returns to SRI adoption?  

First, we consider the impact of intensity of exposure on disadoption. As shown in Table 

7, not only is adoption higher in V2 villages, as established above, but persistent adoption is higher 

and disadoption lower in the villages that randomly received two years of training rather than just 

one. Disadoption conditional on year 1 SRI uptake was 64, 53 and 47 percent among U2, U1 and 

T1 farmers, respectively, two to three times the 22 percent disadoption rate among T2 farmers. 

Clearly, added exposure to SRI training induced farmers to continue with the practice after initial 

uptake. Social spillover effects resulting in delayed adoption were modest, with just 6 and 10 

percent of U1 and U2 farmers, respectively, adopting SRI only in year 2. Having been directly 

trained substantially increased the likelihood of delayed adoption, as 25 percent of T1 farmers only 

adopted in year 2. Additional training did not affect the likelihood of delayed uptake; a statistically 

similar 30 percent of T2 farmers who did not adopt in the initial year tried it in year two. Not only 

did the intertemporal intensity of SRI training exposure affect SRI adoption at the end of both year 

1 (Tables A8 and A9) and year 2 (Table 3), but it matters to the likelihood that initial non-adopters 

 
40 975 farmers from 120 villages adopted SRI in year 1. At the end of year 2, we collected or verified the SRI adoption 
status on only 869 of those farmers; 106 year 1 adopters attritted from the sample. As reported previously (Tables A5-
A6), attrition appears random, so should not impact our analysis.    
41 Duflo et al (2011) also show that in western Kenya, adoption of fertilizers among farmers receiving a one-time 
subsidy dropped back to the same rate as among the comparison group as soon as the subsidy stopped, suggesting that 
such a one-time subsidy does not lead to persistent technology adoption but only has a temporary effect. 
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eventually take up the method and that initial adopters persist in the practice of SRI.  

Appendix Table A14 presents the characteristics of these different groups of farmers by 

adoption/disadoption status.42 The descriptive statistics are revealing, if only indicative. Those 

who adopted SRI in year 1 (persistent adopters and disadopters) had larger land holdings, did 

better on simple memory tests43, and were slightly more risk averse44 before the intervention began 

as compared to those who did not adopt SRI in year 1 (delayed adopters and never adopters). The 

midline non-adopters – delayed adopters and never adopters – had lower baseline cost of 

production and higher baseline profits (including family labor) compared to persistent adopters. 

Although their yields and profits increased from baseline to year 1 (a good growing year), both 

yields and profits were now inferior among the midline non-adopters as compared to those who 

adopted SRI in year 1.  

Delayed adopters had lower baseline and midline yields, costs, and profits per decimal than 

never adopters, and they were less profitable than never adopters at midline. Delayed adopters’ 

yields, costs, and profits surpassed those of never adopters at endline, implying that the decision 

to switch paid off.  

The never adopters did not significantly differ from persistent adopters in terms of baseline 

cost of production but they had higher profits compared to the persistent adopters and delayed 

adopters. They were also at least as well off (in baseline income terms) as the other three groups 

of farmers, relatively older, less educated, but with stronger memory, and greater appetite for risk. 

They also had the smallest land holdings among the four groups.  

The cost of production was relatively low and profits high for all groups in year 1 (midline) 

compared to the baseline for all groups, reflecting a good growing year. However, at the end of 

year 1, the persistent adopters had the same cost of production compared to base year. The 

disadopters had significantly higher costs of production in year 1 than delayed adopters. The 

midline rice profits per decimal from cultivating Boro rice were, if anything, slightly higher for 

disadopters than for persistent adopters. But the change in profits from baseline to midline was 

 
42 When we conduct the analysis for the trained and T1 and T2 villages separately, we find similar patterns. 
43 We test short term memory using memory span exercise. The farmers heard ten words in a row, which they were 
asked to repeat immediately, and the number of words that they could repeat correctly was recorded. We then, after 
ten minutes, asked them to repeat the words for the second time, and again recorded the total number of correct words, 
using it as a measure of their short-term memory. The farmers had average memory spans of 5.4 words and 4.6 words 
in the immediate and ten-minute afterward tests, respectively. 
44  The baseline survey included a standard lottery game (Binswanger 1980) in order to elicit individual risk 
preferences. In this lottery game, famers were asked to choose an option from among six options that are basically 
various combinations of amounts of BDT as payoffs.  Option one ensures a payment of BDT 100, whereas options 
two to six each involve a coin toss that gives an outcome of heads or tails with a 50–50 chance. The degree of riskiness 
of the lottery options increases in ascending order, with option 6 being the riskiest. A farmer is considered as risk-
takers if he chooses option 6, otherwise he is risk-averse. Overall, 69% of the farmers in our sample are risk averse. 
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almost the same for persistent adopters and disadopters. It does not appear that cross-sectional 

heterogeneity in returns to SRI explains disadoption so much as heterogeneity in the observed 

changes in returns. Farmers respond to their lived experience.  

We further explore the possibility of heterogeneous returns based on exposure intensity by 

interacting the treatment dummies in equation (1) with baseline (i.e., pre-treatment) (i) production, 

(ii) cultivable land, (iii) household size, (iv) number of working adults in the household, and (v) 

household income. SRI might have differential effects based on farmer skill manifest in baseline 

productivity (Barrett et al. 2004), on land or labor availability or income (per the pro-smallholder 

claims of some SRI advocates), and labor as often been cited as a bottleneck to (persistent) 

adoption (Moser and Barrett 2006). As reported in Appendix Tables A15 and A16, no consistent, 

statistically significant heterogeneity exists in SRI adoption or profitability along any baseline 

observable dimension. We do find that SRI exposure significantly reduces production costs and 

revenues in proportion to baseline rice output, consistent with the earlier hypothesis that 

unobserved farmer skill affects performance. As shown in Appendix Figures A7-A10 and Table 

A16, quantile regressions provide only a slight suggestion of heterogeneity of impact according to 

baseline profitability. No broad, general pattern of heterogeneous treatment effects based on 

observables appears in the data.  

Table 8 (columns 1-3) reports the multinomial logit regression estimates (per equation 4) 

associating the (delayed or persistent) adoption or disadoption decision – relative to the never 

adopter comparison group in V1 and V2 villages – to both the experimental treatments and to 

baseline farmer characteristics. The U1 treatment arm serves as the comparison group. Column 4 

reports the logit regression of disadoption conditional on year 1 uptake of SRI. Direct SRI training 

exposure sharply increases the likelihood of ever trying SRI. For T2 farmers, the effect is 

significantly larger on the likelihood of persistent adoption than of delayed adoption or 

disadoption. T1 farmers are far more likely to be persistent adopters than delayed adopters, but 

more likely to adopt with a delay than are untrained (U1 or U2) farmers.  The higher a farmer’s 

baseline production, the less likely he was to adopt SRI with a delay and the greater the likelihood 

that he disadopted. Conversely, the higher a farmer’s baseline costs, the more likely he was to 

adopt at midline. Older farmers and those with higher baseline income were much less likely to 

become persistent adopters and more likely to disadopt conditional on midline use of SRI.  By 

contrast, farmers with more land, younger and lower income were more likely to become persistent 

adopters. Overall, these estimates are consistent with the simple descriptive patterns found in Table 
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7.45 Farmers are far more likely to experiment with SRI and are more likely to continue trying it 

the more exposed they have been to the method through training. But although SRI appears to 

generate real productivity gains on average, farmers make adoption and disadoption decisions 

consistent with their personal experience of gains (or not) from their own experimentation. They 

do not appear, however, to treat experimentation as a means of learning how best to use the 

technology, so that they improve performance via learning by doing.  

 

6. Implications for Learning Models in the Technology Adoption Literature  

A striking contrast exists between the strong impact of SRI training we observe at the 

extensive margin on adoption – as farmers go from complete unfamiliarity with the method to 

some exposure – and the modest-to-negligible effects we observe at the intensive margin, in the 

performance differences among treatment arms based on exposure intensity. Increased SRI 

training exposure has a big impact on adoption rates but beyond the lowest level of indirect 

exposure, more training does not consistently and significantly boost performance with the 

innovation. Given non-random selection into uptake based on unobservable ability, we find 

training intensity exposure mainly generates a diffusion scaling effect. Farmers seem to sort 

between adoption or non-adoption, and between continued or discontinued use after initial uptake, 

in a highly rational way, as manifest, for example, in the absence of any stochastic dominance 

ordering between adopters and non-adopters within any treatment arm.  

These findings have implications for how economists understand learning in the context 

of technology adoption in developing countries. In particular, they seem inconsistent with core 

predictions of workhorse target-input models of technology adoption, but are consistent with 

newer multi-object learning models, with potentially important implications for the study of the 

adoption of agricultural (and other) technologies.  

A rich literature has followed the pathbreaking work of Foster and Rosenzweig (1995), 

which builds on prior information theoretic work on learning (Wilson 1975; Jovanovic and Nyarko 

1995) to model a producer choosing among multiple technologies that exhibit uncertain and 

endogenous profitability. As farmers accrue more observations of a new technology that, if used 

correctly, is expected to be more profitable than the incumbent practice – e.g., an improved seed, 

a new fertilizer – the additional information helps them steadily approach optimal expected 

practices, leading to consistently higher expected profits and therefore well-being. Each additional 

observation of an application of the new technology, whether by the farmer himself – i.e., learning 

 
45 We estimate the same models using only the sub-sample of farmers who received training and find similar results.   
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by doing – or by other farmers, extension agents or agro-input dealers – i.e., learning from others 

– creates another opportunity to learn and thereby to make better, more profitable production 

decisions. A farmer optimally adopts the new technology only once he has learned enough that the 

expected profitability of adopting the new technology – including the future returns from learning 

by doing – exceeds that of sticking with the incumbent, traditional practices. As further 

information arrives through his own experience with the technology, he continues to learn and 

thereby further improves his expected performance. The profitability of the new technology is thus 

endogenous to farmer learning and is itself the single, performance-based object of that learning.  

A considerable literature has built, explicitly or implicitly, on this conceptualization of 

endogenous farmer performance with a new technology, with the optimal application of the 

technology – most commonly summarized by profits – as the unique object of learning. Conley 

and Udry (2010), in another seminal paper, offer a similar model of a stochastic profit function as 

the object of farmers’ learning as they seek to optimize fertilizer application (in pineapple 

production in Ghana). New information arrives, from a farmer’s own experiments with fertilizer 

and from observing the practices and outcomes of other farmers in his network. Farmers learn 

from those new observations and respond by adjusting fertilizer application rates. As they learn 

more, information-driven adjustments to practices lead to higher farmer profits.  

The target input model carries two directly testable implications. First, the more farmers 

learn, the better they should perform with the new technology, on average. To quote Foster and 

Rosenzweig (1995, p. 1178), “the profitability of any new technology grows over time as 

knowledge accumulates.” One should be able to reject the null hypothesis that profit – or any 

performance-based object of learning, e.g., crop yield – is invariant with respect to a farmers’ 

exposure to the technology in favor of the one-sided alternate hypothesis that performance 

improves with learning about the technology. We consistently fail to reject that null in our data.  

 The second prediction is that a farmer should use a new technology if and only if he has 

learned enough about how to apply the new technology optimally such that he enjoys positive 

expected profits from adoption, up to the discounted future value of gains from subsequent 

learning-by-doing. Once a farmer has adopted, subsequent learning-by-doing should only further 

increase the expected profitability from the technology, implying that the farmer should never 

disadopt. Indeed, Conley and Udry (2010, p.62) expressly state that farmer “movements from 

positive to zero fertilizer use are mistakes.” We find high rates of SRI disadoption, however, in 

spite of strongly positive and statistically significant expected profit gains and no significant 

heterogeneity in the returns to a technology conditional on observables could generate disadoption. 

This finding likewise seems inconsistent with target-input models of learning.  
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Overall, our findings suggest that intensity of SRI training exposure impacts learning about 

whether to use the method far more than it does how best to use the technology. These findings 

are supported by detailed analysis of how intensity of SRI training exposure affects farmer 

adherence to the precise principles BRAC extension agents communicated in the training, as 

reported in Tables A17 and A18 and the accompanying appendix text. Few farmers commit a large 

share of their rice land to SRI, and adherence to principles as taught is limited and does not adjust 

much, if at all, with additional experience with or exposure to SRI from midline to endline. 

As farmers increasingly confront more complex technologies that, like SRI, may require 

learning about multiple objects simultaneously, newer, multi-object learning models may prove 

more suitable than the workhorse target-input model. These models draw a key distinction between 

learning whether a new technology is likely to boost performance, versus learning how best to 

employ that same technology so as to boost performance (Fafchamps et al. 2016; Banerjee et al. 

2019; Nourani 2019; Maertens et al. forthcoming). Learning whether it is worthwhile to try a new 

technology may be less costly than is learning how to use the technology to maximal effectiveness. 

Indeed, this is the fundamental problem of marketing. Sales agents aim to provide enough 

information to convince a prospective customer to try a product. The objective is not necessarily 

to optimize the customer’s experience of the new technology. Similarly, agricultural extension 

agents directed (and rewarded) to promote uptake of a new technology that is, on average, superior, 

provide information that helps induce farmer uptake. But more exposure to that same information 

does not necessarily improve farmer performance with the new technology nor induce farmers to 

adjust their practices to optimize their experience with it. This distinction between single object 

learning about performance and multi-object learning matters to the design of effective agricultural 

information systems, such as extension services.  

A related thread of this literature further hypothesizes that in the face of costly learning, 

agents might fail to improve in their performance with a technology because they do not pay 

attention to the right pieces of available information. Such ‘rational’ or ‘selective’ inattention 

models (Gabaix et al. 2006; Schwartzstein 2014; Hanna et al. 2014; Ghosh 2016; Wolitzky 2018; 

Gabaix 2019) generate a prediction similar to multi-object learning models. Increased information 

access may favourably impact uptake but not performance. Having learned that a new technology 

is, on average, more productive than one’s traditional practice, a farmer might rationally confirm 

that belief with further information, doubling down on the initial adoption choice, but not paying 

attention to other available data that might help him improve his performance with the technology.  

For example, Hanna et al. (2014) study Indonesian seaweed farmers who optimize with 

respect to some of many production choice variables but underperform by failing to notice and 
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adjust a key technology feature. As with SRI, seaweed farmers face a suite of multiple variables 

that matter to performance and might not be able, or willing, to pay attention to them all. In a world 

of selective inattention, greater farmer exposure to information may reinforce beliefs that lead 

farmers to try a new practice, like SRI, yet farmers might not pay attention to key information as 

to how they might improve their use of the new technology, perhaps especially if they enjoy gains 

from the new practice, even sub-optimal gains. This can result in satisficing-like behaviour.  

We cannot directly test whether Bangladeshi rice farmers pay attention to particular pieces 

of information or not. But we do find that practices and performance – as distinct from adoption – 

respond modestly, often insignificantly, to additional information beyond the extensive margin of 

initial exposure to SRI training. We cannot identify the right learning model in our data. But our 

findings reinforce the prospective importance of emergent models of multi-object learning and 

selective or rational inattention to processes of agricultural development.46  

The distinction between single and multi-object learning models is a subtle but important 

one. The simple reason is that promoting diffusion of a technology differs from advancing optimal 

performance as the method diffuses. Extension services in the developing world commonly 

organize (and are evaluated and compensated) simply around diffusion of new methods, rather 

than around farmers’ performance in employing new methods. That approach works in a target-

input world, in which learning sufficient to induce uptake will necessarily lead to continued 

learning and further productivity and profitability improvements. But in a world of multi-object 

learning, rational inattention, or both, the learning that induces uptake may not generate 

satisfactory, sustained productivity or profitability with the innovation. Farmers can then persist 

in implementation errors or even disadopt when disappointed by their (perhaps suboptimal) 

performance with the new technology. Our evidence strongly supports the value of further research 

on multi-object learning among farmers.  

 

7. Conclusion 

Although the system of rice intensification (SRI) has now spread to more than 50 countries, the 

existing evidence on the purported gains from SRI previously relied exclusively on observational 

data ill-suited to rigorous causal identification. Partly for that reason, claims of gains from SRI 

have remained contentious within the international agricultural research community. This paper 

offers the first SRI impact evaluation based on a large-scale, multi-year RCT.  

 
46 Wolitzky (2018) shows that for outcome-improving innovations, such as the one we study, adoption increases the 
greater one’s exposure to (i.e., data on) the new technology. He also demonstrates how rational agents can fail to learn 
from more observations of cost-reducing technologies. That latter result is superficially consistent with our empirical 
findings, except that the technology we study is demonstrably outcome-improving and cost-increasing.  
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We find that providing relatively brief training to Bangladeshi farmers on the key 

principles and practices of SRI induces significant farmer adoption of the method in villages 

previously unexposed to the technology. The extent of SRI adoption varies directly with the 

intensity of exposure to SRI training. Those directly trained in two successive years are 

significantly more likely to adopt (and less likely to disadopt) SRI than those trained in just the 

first year.  

Significant spillovers arise from training. Untrained farmers in training villages are 

significantly more likely to adopt SRI than are farmers in pure control villages where no training 

took place. Farmers directly trained are nonetheless four to five times more likely to adopt SRI 

than untrained farmers within the training villages, indicating that farmers learn more from 

extension agents than from each other. The within-village saturation rate of SRI training has no 

discernible effect on uptake until one gets to high rates of saturation, where it reinforces training 

that is sustained over time. This suggests a complementarity between repeating training over time 

and higher saturation rates in each training.  

 Our findings strongly support the extant observational evidence on SRI’s impacts. The ITT 

estimates of SRI training’s impacts on rice yields and profits are statistically significant and very 

large: 14-17 and 21-34 percent, respectively. The LATE estimates of the impacts of SRI training 

are significantly larger still and, if anything, underestimates given the possibility of modest 

negative impacts on local rice pricesWe also find positive and statistically significant gains in 

various household well-being measures among farmers in training villages. These findings 

contrast with prior concerns from observational studies that the apparent gains to SRI arise from 

redistribution of household resources into rice, resulting in negligible household well-being gains. 

Our findings thus strongly support existing claims, based on observational data, that SRI might 

play an important role in boosting agricultural productivity and farm household food security and 

well-being in the developing world. 

Yet SRI disadoption rates are also high, likewise confirming key findings of prior 

observational studies. Roughly one-third of the farmers adopt SRI and about 60% of early adopters 

continue the practice a year later, while almost identical numbers of farmers adopted SRI with a 

one-year lag as disadopted after an initial year’s experience with the method. Disadoption patterns 

directly reflect pre-treatment conditions and post-adoption experiences, with farmers who did well 

prior to the introduction of SRI, or who saw little or no improvement from SRI in their first 

season’s trial, far more likely to disadopt.  

 These disadoption patterns are consistent with the apparent non-random selection into SRI 

adoption conditional on SRI training exposure intensity. The main effect of greater exposure to 
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SRI training occurs at the extensive margin, in scaling up the number of farmers practicing SRI 

rather than at the intensive margin, in improving farmers’ performance with SRI or in increasing 

adherence to the principles taught by extension agents. Greater training exposure boosts SRI 

uptake conditional on farmer unobservables, such as ability, that also impact performance with the 

new technology and are almost surely correlated with a farmer’s propensity to adopt an innovative 

practice. The result is seemingly-rational self-selection into SRI use, both in cross-section, 

comparing adopters and non-adopters within a given period, and over time, looking at patterns of 

delayed adoption or disadoption. 

These results may help settle intense debates around SRI as a tool for boosting rice 

productivity and rice farmers’ well-being in rural Asia and Africa. But our findings also raise 

several important issues, including about how we economists conceptualize and model farmer 

learning about new technologies in the adoption process, even for practices that appear to deliver 

considerable productivity and welfare gains. 
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Table 1: Summary statistics of SRI adoption, yield and profits  
Panel A: SRI Adoption Control (C) U1 T1 U2 T2  p-value (U2-U1) p-value (T2-T1) 

 Midline Endline  Midline Endline  Midline Endline  Midline Endline  Midline Endline Midline Endline Midline Endline 
SRI adoption  0.00 0.00 6.94 8.80 49.72 38.05 8.24 12.38 49.15 52.96 0.20 0.00 0.69 0.00 
Plot level observations 3973 3551 1469 1261 2307 2063 1298 1147 2468 2264     
Panel B: Other measures of adoption     
Self-assessed SRI adoption  1.01 0.00 7.16 8.41 50.28 37.86 8.80 12.03 49.25 52.74 0.11 0.00 0.48 0.00 
Enumerator-assessed SRI adoption 0.45 0.00 5.12 7.11 38.00 32.66 6.56 11.01 39.33 47.85 0.10 0.00 0.34 0.00 
Extent of SRI adoption 0.00 0.00 4.70 7.34 36.74 31.86 5.78 9.16 37.07 45.88 0.15 0.08 0.78 0.00 
% of land used for SRI 0.50 0.00 3.66 4.50 22.84 21.47 4.05 7.32 19.04 25.80 0.51 0.00 0.00 0.00 
No of principles adopted 0.69 0.72 0.86 0.96 1.32 1.45 0.94 1.17 1.29 1.74 0.02 0.00 0.45 0.00 
Age of seedlings1 0.43 0.56 0.27 2.43 3.88 4.63 0.46 1.07 2.72 6.25 0.41 0.02 0.03 0.03 
Age of seedlings (days) 42.81 41.74 45.23 43.88 40.54 40.34 42.00 42.58 38.45 37.79 0.00 0.08 0.00 0.00 
No of seedlings per bunch1 12.50 10.11 14.39 12.85 27.15 30.72 17.68 17.49 27.39 34.60 0.02 0.00 0.85 0.01 
Distance among seedlings1 0.43 0.50 2.18 6.02 15.56 24.49 4.63 9.23 14.63 29.80 0.00 0.00 0.37 0.00 
Alternate drying & wetting1 46.94 53.48 59.14 57.05 66.45 63.87 57.30 71.43 64.12 75.45 0.33 0.00 0.09 0.00 
Use of organic fertilizer1 8.87 7.74 10.30 17.70 18.87 21.13 13.59 17.49 20.40 27.55 0.01 0.90 0.18 0.00 
Mechanical weeding1 3.02 0.44 1.16 9.61 3.31 12.24 0.77 4.96 2.23 9.05 0.30 0.10 0.02 0.00 
Panel C: Production, Cost and Profit (per decimal)     
Yield (kg) 22.36 21.28 25.16 24.46 25.90 24.84 25.70 24.81 25.78 25.01 0.03 0.23 0.55 0.47 
Estimated revenue  825.60 800.57 967.98 939.89 1003.88 954.25 980.24 952.50 973.75 952.39 0.25 0.28 0.00 0.84 
Input cost 148.14 135.85 157.13 155.36 162.22 155.74 156.52 154.03 156.74 155.43 0.71 0.57 0.00 0.85 
Labor cost 294.44 369.17 311.96 421.00 324.25 446.40 302.92 429.13 318.61 440.58 0.03 0.42 0.11 0.50 
Total cost 442.58 505.02 469.08 576.41 486.48 602.50 459.44 583.20 475.34 596.04 0.06 0.52 0.01 0.47 
Estimated profit 383.02 295.55 496.53 347.24 503.77 354.92 506.00 376.22 509.11 386.27 0.35 0.04 0.51 0.00 
Plot level observations 3967 3174 1466 1101 2295 1778 1295 1014 2461 1977     

Notes: SRI adoption is measured using verification at the planting and pre-harvesting period visits by BRAC field investigators. The reported p-values are from the two-tailed test with the null hypothesis 
that the group means are equal. Yield is total sellable product per decimal of land (in kg) after adjusting for wastage due to floods, drought and diseases. Total revenue is total sale revenue at the mode of 
farmer-reported prices at the district level, in Bangladeshi taka (BDT) per decimal of land. Results are qualitatively identical when valued at median prices, which are more vulnerable to bias due to outliers. 
Input cost (in BDT) includes all purchased factors: seed, fertilizer (both organic and chemical), irrigation (including fuel and electricity but not water), ploughing and tractor services, and pesticide and 
weedicide, all per decimal of land. Labor cost includes the wage cost for both hired and contract labor as well as imputed cost of family labor per decimal of land. We impute the cost of unpaid family 
labor at the mode of district level reported wage rates. Results are very similar using mean and median wage rates (results available by request). Total cost includes both labor and non-labor input cost per 
decimal of land. One decimal=1/100 of an acre. The number of observations slightly differ between Panel A and Panel B as we collected the data on adoption and data on production at different times. 
One-time training (T1) and two-time training (T2) include only households which have received training in the treatment villages only. U1 and U2 include those who did not receive training.  Self-assessed 
SRI adoption reflects the farmers’ declaration post-adoption. It’s a dummy variable to indicate if a farmer himself thinks he has adopted or not; Enumerator-assessed SRI adoption uses assessment by 
enumerators at the time of midline or endline post-adoption survey. It is also a dummy variable based on enumerators’ assessment about whether the respondent farmers followed SRI principles on any 
plot of land. Extent of SRI adoption is farmers’ own assessment about the SRI adoption on 0-100. % of land used for SRI is percentage of total land under SRI. 1 dummy variable indicating if a farmer 
followed that principle as recommended by BRAC for SRI. Age of seedlings (days) is the average number of days of seedlings used for transplantation.
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Table 2: ITT and LATE Effects at Endline 

 
Note 1: The treatment effects indicate the treatment status within the treatment villages where the base category is 
control group. The SRI adoption status variable was collected in multiple post-transplantation visits while the other 
outcome variables were obtained from a post-harvest survey. Hence, the difference in sample size between column 
1 and the others. Control mean indicates raw (not log-transformed) mean for the variable at the baseline. All 
regressions are weighted using inverse of proportion of village farmers in our sample. 
Note 2: Family labor cost is included in the variables total cost and profit using self-assessed wage at the district 
level. Yield, cost and revenue are expressed in logarithms. To accommodate observations with negative profits we 
ran regressions using untransformed profit data, and then divide the estimated coefficients by the control group 
mean to obtain percentage change estimate comparable to those in the log-based regressions. The controls used in 
the regressions are as follows: dummy indicating whether household head’s age> 45, whether above primary level 
education, land size>median (120 decimals), head married or not, household size, (log of) household income, 
household composition such as number of children, women, working age people, and maximum education by any 
member in the household. Standard errors are clustered at the village level. The F-stat is from the first stage of the 
IV regression. *** p<0.01, ** p<0.05, * p<0.1 

 
 
 

 (1) (1’) (2) (3) (4) (5) 
Panel A: ITT  SRI Adoption (%) Yield Revenue Total Cost Profit  
One-time untreated (U1) 9.487*** 10.250*** 0.141*** 0.166*** 0.125*** 0.209* 
 (1.846) (2.106) (0.031) (0.033) (0.046) (0.116) 
One-time treated (T1) 38.658*** 38.380*** 0.145*** 0.168*** 0.161*** 0.220* 
 (3.436) (3.768) (0.033) (0.035) (0.049) (0.120) 
Two-time untreated (U2) 12.368*** 13.437*** 0.146*** 0.169*** 0.143*** 0.285* 
 (2.701) (2.949) (0.034) (0.037) (0.049) (0.145) 
Two-time treated (T2) 52.543*** 51.584*** 0.166*** 0.181*** 0.156*** 0.344*** 
 (4.276) (4.302) (0.031) (0.033) (0.050) (0.129) 
Baseline    0.215*** 0.212*** 0.023 0.261*** 
outcome   (0.032) (0.030) (0.034) (0.052) 
       
Observations 10,286 8,626 8,626 8,626 8,626 8,626 
R2 0.281 0.274 0.084 0.097 0.051 0.039 
       
p-value (U1-T1) 0.00 0.00 0.82 0.94 0.18 0.86 
p-value (U1-U2) 0.37 0.38 0.87 0.95 0.70 0.61 
p-value (T1-T2) 0.01 0.02 0.50 0.70 0.93 0.36 
p-value (U2-T2) 0.00 0.00 0.28 0.53 0.66 0.54 
Adopted SRI (IV=Treatment status) 0.242*** 0.262*** 0.255*** 0.474*** 
   (0.047) (0.052) (0.074) (0.179) 
Baseline outcome   0.238*** 0.238*** 0.045 0.289*** 
   (0.033) (0.032) (0.039) (0.051) 
Observations   8,626 8,626 8,626 8,626 
Adjusted R2   0.0365 0.0276 -0.0108 0.0104 
Hansen J   0.0864 0.247 0.502 0.198 
Prob>J   0.769 0.619 0.479 0.657 
F-stat   116 117.5 115.4 118.7 
Control Mean   0.00 0.00 21.28 800.57 505.02 295.55 
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 Notes: Same as Table 3.  
 

 (1) (2) (3) (4) (5) 
 Adoption Yield Revenue Total Cost Profit 
U1 5.665 0.205*** 0.222*** 0.177 0.273 
 (6.970) (0.075) (0.085) (0.116) (0.349) 
One-time untreated (U1F) 8.218 -0.139 -0.115 -0.094 -0.155 
 (15.107) (0.165) (0.188) (0.263) (0.788) 
U1F x > 70% -0.666 0.004 -0.052 -0.165 0.128 
 (6.270) (0.077) (0.086) (0.147) (0.305) 
T1 49.180*** 0.157* 0.155* 0.093 0.356 
 (13.243) (0.081) (0.089) (0.130) (0.367) 
One-time treated (T1F) -26.405 0.009 0.070 0.196 -0.262 
 (28.044) (0.153) (0.170) (0.258) (0.751) 
T1F x > 70% 24.698** -0.111 -0.174** -0.261** 0.032 
 (11.009) (0.074) (0.082) (0.128) (0.299) 
U2 1.495 0.201** 0.222* 0.191 0.286 
 (5.845) (0.101) (0.118) (0.136) (0.548) 
Two-time untreated (U2F) 17.391 -0.109 -0.104 -0.074 -0.045 
 (14.365) (0.212) (0.243) (0.244) (1.062) 
U2F x > 70% 34.407** -0.007 -0.028 -0.156 0.308 
 (13.366) (0.121) (0.138) (0.110) (0.411) 
T2 40.401** 0.314*** 0.355*** 0.137 0.833* 
 (17.579) (0.105) (0.115) (0.176) (0.491) 
Two-time treated (T2F) 12.972 -0.286 -0.324 0.068 -0.986 
 (35.166) (0.208) (0.227) (0.323) (0.954) 
T2F x > 70% 17.584 0.091 0.074 -0.088 0.397 
 (14.352) (0.077) (0.087) (0.137) (0.381) 
Baseline outcome  0.214*** 0.210*** 0.026 0.264*** 
  (0.031) (0.030) (0.033) (0.051) 
Observations 10,286 8,626 8,626 8,626 8,626 
Adjusted R2 0.304 0.088 0.104 0.063 0.042 
      
p-value (U1F-T1F) 0.17 0.30 0.23 0.11 0.86 
p-value (U1F-U2F) 0.66 0.91 0.97 0.96 0.93 
p-value (T1F-T2F) 0.38 0.26 0.17 0.76 0.55 
p-value (U2F-T2F) 0.89 0.32 0.25 0.51 0.17 
Control mean 0.00 21.28 800.57 505.02 295.55 

Table 3: Nonlinearity in the ITT Effects of Treatment Intensity at Endline 
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Table 4: Input costs impacts of SRI by treatment intensity 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Panel A: ITT Seed cost Inorganic Organic Irrigation Pesticide Other costs Input cost Hired labor Family labor 
One-time untreated (U1) 0.017 0.022 0.538** 0.164*** 0.054 0.183*** 0.138*** 0.036 0.146 
 (0.049) (0.030) (0.245) (0.062) (0.054) (0.033) (0.033) (0.163) (0.102) 
One-time treated (T1) 0.009 0.008 0.830*** 0.206*** -0.053 0.117*** 0.151*** 0.160 0.195** 
 (0.047) (0.026) (0.218) (0.053) (0.047) (0.032) (0.027) (0.162) (0.096) 
Two-time untreated (U2) -0.004 0.012 0.428* 0.217*** -0.095* 0.145*** 0.140*** 0.111 0.264** 
 (0.049) (0.031) (0.247) (0.073) (0.050) (0.038) (0.036) (0.168) (0.111) 
Two-time treated (T2) 0.014 -0.000 0.872*** 0.191*** -0.213*** 0.154*** 0.146*** 0.198 0.278*** 
 (0.051) (0.026) (0.204) (0.058) (0.038) (0.031) (0.029) (0.174) (0.096) 
Baseline outcome 0.027** 0.034*** 0.406*** 0.108*** 0.043*** 0.023** 0.014 0.272*** 0.236*** 
 (0.012) (0.008) (0.044) (0.017) (0.012) (0.011) (0.012) (0.051) (0.031) 
Observations 8,626 8,626 8,626 8,626 8,626 8,626 8,626 8,626 8,626 
R2 0.012 0.013 0.146 0.057 0.029 0.018 0.051 0.062 0.107 
p-value (U1-T1) 0.81 0.47 0.10 0.25 0.02 0.07 0.51 0.15 0.42 
p-value (U1-U2) 0.65 0.77 0.73 0.50 0.03 0.40 0.96 0.66 0.32 
p-value (T1-T2) 0.91 0.77 0.88 0.79 0.00 0.32 0.83 0.83 0.41 
p-value (U2-T2) 0.67 0.58 0.03 0.63 0.01 0.78 0.83 0.40 0.85 
Panel B: LATE           
Adopted SRI (IV=Treatment Status) 0.021 -0.008 1.624*** 0.300*** -0.353*** 0.177*** 0.232*** 0.373 0.406*** 
 (0.077) (0.036) (0.279) (0.087) (0.064) (0.052) (0.048) (0.243) (0.129) 
Baseline outcome 0.027** 0.035*** 0.357*** 0.117*** 0.047*** 0.037*** 0.009 0.290*** 0.234*** 
 (0.012) (0.008) (0.042) (0.018) (0.013) (0.012) (0.012) (0.050) (0.030) 
Observations 8,626 8,626 8,626 8,626 8,626 8,626 8,626 8,626 8,626 
Adjusted R2 0.00881 0.0124 0.183 0.0211 0.00605 0.00126 -0.0114 0.0501 0.107 
Hansen J 0.00278 0.0657 0.536 0.783 3.691 0.166 1.297 0.00289 0.114 
Prob>J 0.958 0.798 0.464 0.376 0.0547 0.684 0.255 0.957 0.736 
F-stat 112.5 115.6 121.9 116.7 113 118.9 116.2 118.4 101.5 
Control mean 9.09 36.79 5.16 59.77 5.20 19.56 135.57 187.59 103.32 

Notes: Standard errors are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1. All cost variables are in BDT. Seed cost includes the cost of purchasing seeds. Inorganic 
cost includes cost of purchased urea, potash, phosphate and other chemical fertilizers. Irrigation cost includes fuel and electricity costs for pumps. Pesticides include all chemical 
herbicides, insecticides, rodenticides, and other types. Other cost includes the cost of non-labor ploughing cost and tractor costs. To accommodate observations with zero values 
we ran regressions using untransformed data, and then divide the estimated coefficients by the control group mean to obtain percentage change estimate comparable to those in the 
log-based regressions. The F-stat is from the first stage regression. 
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Table 5: Estimated Well-being Effects of SRI by Endline 
 

  (1) (2) (3) (4) 
Panel A: ITT  
(Treatment Status) Savingsa 

Household 
status 

Food  
security 

Life 
 satisfaction 

One-time untreated (U1) 0.319* 0.183** 0.257** 0.237* 
 (0.188) (0.093) (0.126) (0.130) 
One-time treated (T1) 0.370*** 0.123* 0.481*** 0.322*** 
 (0.135) (0.073) (0.119) (0.111) 
Two-time untreated (U2) 0.334* 0.014 0.264** 0.304*** 
 (0.170) (0.091) (0.119) (0.113) 
Two-time treated (T2) 0.356** 0.114 0.308*** 0.287** 
 (0.177) (0.072) (0.111) (0.118) 
Baseline outcome 0.046*** 0.420*** 0.027 0.049*** 
 (0.016) (0.035) (0.038) (0.016) 
Observations 3,403 3,403 3,403 3,403 
R2 / Pseudo R2 0.038 0.174 0.060 0.019 

     
p-value (U1-T1) 0.76 0.50 0.02 0.25 
p-value (U1-U2) 0.95 0.13 0.95 0.57 
p-value (T1-T2) 0.94 0.90 0.11 0.74 
p-value (U2-T2) 0.89 0.18 0.59 0.82 
Panel B: LATE      
Adopted SRI (IV=Treatment 
status) 0.605** 0.169 0.584*** 0.382** 
 (0.261) (0.126) (0.151) (0.158) 
Baseline outcome 0.046*** 0.419*** 0.031 0.066*** 
 (0.016) (0.035) (0.038) (0.015) 
Observations 3,403 3,403 3,403 3,403 
Adjusted R2 0.024    
Hansen J 0.217    
Prob>J 0.641    
F-stat* 119.1    
Control mean 84.38 4.05 4.59 7.38 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the village level. Saving is average monthly 
savings over the last one year, in Bangladesh Taka (BDT). Savings is calculated as the difference between average 
monthly income and expenditure over the last one year. Household status is “Compared to other people in your 
village, would you describe your household as ….. (Cross one box)” [1] The poorest in the village, [2] Among the 
poorest in the village, [3] A little poorer than most households, [4] About average, [5] A little richer than most 
households, [6] Among the richest in the village, [7] The richest in the village. Food security is “How often in the 
last year did you have problems satisfying the food needs of the household?”[1] Always, [2] Often, [3] Sometimes, 
[4] Seldom, [5] Never.  Life satisfaction is “All things considered, how satisfied are you with your life? Pick a 
number between 0 and 10 to indicate how satisfied you are. The more satisfied you are, the higher the number you 
should pick. The less satisfied you are, the lower the number.” As some of the savings were negative; we ran normal 
regressions for the saving variables and present the estimated coefficients divided by the mean of the control group. 
Ordered Probit was used to estimate the effects of SRI training on household status, food security, life satisfaction 
and satisfaction with living standard in Panel A. Ordered Logit estimates yield similar marginal effects.   
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Table 6: Village-level general equilibrium impacts at endline 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: We also control for other village level characteristics used in Table A4. Wage rate is the average of the 
modal wage rates for different pre-harvest and post-harvest activities (field preparation, transplanting, weeding, 
harvesting) while price is the average of the (mode) prices of different types of rice. Standard errors are robust. *** 
p<0.01, ** p<0.05, * p<0.1. All outcome variables are in BDT. 
 
 
 
 
 

Table 7: SRI Adoption and Disadoption Transition Matrix 
 

SRI 
Adoption 

End of 
Year 1 

SRI Adoption End of Year 2 
 

Total 

Did not Adopt Adopted 

Did not 
Adopt 

(Never adopters) 
1465 (55.32%) 

(U1=444, T1=308, U2=383, T2=330) 

(Delayed adopters) 
314 (11.86%) 

(U1=28, T1=101, U2=41, T2=144) 

1779 
67.18% 

Adopted (Disadopters) 
313 (11.82%) 

(U1=16, T1=186, U2=21, T2=90) 

(Persistent adopters) 
556 (21.00%) 

(U1=14, T1=208, U2=12, T2=322) 

869 
32.82% 

N  
%  

1778 
67.15% 

870 
32.85% 

2648 
100% 

Note: Estimates are based on sample households who were surveyed in both year 1 and year 2. 
 
  

    
Panel A: Treated villages only Wage rate Rice price 
      
Fraction sample treated -20.412 -1.238* 

 (13.468) (0.641) 
Two-time training village (Ref: One-time) 0.634 0.074 

 (4.283) (0.206) 
Observations 120 120 
R-squared 0.226 0.229 
Panel B: All villages   
   
Fraction sample treated -17.080 -1.091* 
 (13.236) (0.619) 
One-time training village (Ref: Control) -0.383 -0.137 
 (7.008) (0.345) 
Two-time training village 0.256 -0.022 
 (8.010) (0.359) 
Observations 182 182 
R-squared 0.323 0.250 
Control villages endline mean 340.32 15.06 
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Table 8: Factors associated with disadoption, delayed adoption or persistent adoption 
 Base category vs. Never adopters  vs. Persistent adopters 

Variables of Interest Disadopted 
Delayed 
adopters 

Persistent 
adopters Disadopted 

 (1) (2) (3) (4) 
Log of baseline production 0.554* -0.530** -0.306 0.934*** 
 (0.302) (0.223) (0.255) (0.297) 
Log of baseline cost 0.044 -0.567** -0.004 0.063 
(adjusted for family labour) (0.268) (0.281) (0.320) (0.283) 
T1  2.809*** 1.621*** 3.114*** -0.488 
 (0.293) (0.247) (0.302) (0.487) 
U2 0.343 0.525 -0.071 0.263 
 (0.371) (0.363) (0.477) (0.629) 
T2 2.000*** 1.951*** 3.415*** -1.603*** 
 (0.319) (0.300) (0.381) (0.520) 
Household head’s age greater than 45 -0.064 -0.002 -0.674*** 0.678*** 
 (0.185) (0.183) (0.173) (0.175) 
Household head has primary education 0.057 0.087 0.284 -0.300* 
 (0.183) (0.179) (0.173) (0.181) 
Baseline cultivable land above median 0.202 0.298* 0.393** -0.215 
 (0.162) (0.172) (0.156) (0.221) 
Baseline monthly household income -0.838 -2.370 -3.589*** 2.382** 
 (0.709) (1.501) (1.353) (0.963) 
Observations 2,562 2,562 2,562 853 
Notes: Columns 1-3 reports the coefficients from a multinomial logit model where the base category is never 
adopters. Column 4 shows the coefficients of a logit model where the base category is persistent adopters. Both the 
models control for all the household characteristics used in estimating the ITT effects. Standard errors are clustered 
at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Note: None of the five groups stochastically dominates another based on Somers’ D statistic. 
 

Figure 1: Cumulative distribution function of baseline rice output per decimal of land  
 
 

 
 

Figure 2: Village-level SRI adoption rate by proportion of treated farmers 
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Note: The x axis shows the number of farmers who have adopted SRI, ranked from highest (1) to lowest (N) 
profitability within the treatment arm. The calculation of (endline) profits takes into account the imputed cost of 
family labour. 

Figure 3: Ordered endline profits (adjusted for family labour) by treatment status 
 
 
 

 
 

Note: The x axis shows the number of farmers who have adopted SRI, ranked from highest (1) to lowest (N) rice 
yield within the treatment arm. 

Figure 4: Ordered endline yield by treatment status 
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Notes: p-value associated with Somers’ D test for first order stochastic dominance for U1(adopted-did not 
adopt)=0.50, T1(adopted-did not adopt)=0.36, U2(adopted-did not adopt)=0.44 and T2(adopted-did not adopt)=0.22. 
Tests for second and third order dominance likewise find no statistically significant ordering.  
Figure 5: Cumulative distribution function of endline production per decimal of land by 

treatment and adoption status 
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Table A1: Sample distribution 

Treatment status  
No. of 

Villages 

Total 
baseline 
farmers 

Total midline 
(2014-15) 

farmers  

Total endline 
(2015-16) 

farmers 
Control (C) 62 1856 1663 1464 

       (3983) (3973) (3551) 

1-year training villages 60 1805 1646 1313 

  (3820) (3776) (3324) 

     Trained farmers (T1)  1060 993 806 

  (2330) (2307) (2063) 

     Untrained farmers (U1)  745 653 507 

  (1490) (1469) (1261) 

2-year training villages 60 1825 1625 1354 

  (3786) (3766) (3411) 

     Trained farmers (T2)  1166 1051 892 

  (2479) (2468) (2264) 

     Untrained farmers (U2)  659 574 462 

  (1307) (1298) (1147) 

Total 182 5486 4934 4131 

  (11589) (11515) (10286) 

Notes: Number of plot level observations used for adoption are shown in parenthesis. Most farmers have multiple 
plots of land for cultivation (on average slightly more than 2 plots); hence the number of plot level observations are 
more than the number of farmers/households which are reported on top. 
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Randomization checks 

Appendix Table A2 (Panel A) reports the basic demographic and socio-economic characteristics 

of the treatment and control households using data from the baseline survey round. Household 

characteristics were similar between the treatment and control groups. There was no statistically 

significant difference at baseline between control and treatment households in farm size, family 

size, working age member, education, prior rice yields, costs, or profits, individually or jointly. 

The first-stage of randomization was therefore successful. In Panel B, we show the same 

characteristics but for farmers who were selected randomly for training and those left untreated 

within the treatment villages, the second stage of randomization. Again, there is also no 

statistically significant difference in these observable characteristics among the treated and 

untreated households within the treatment villages at baseline. 

 

Appendix Table A3 compares the baseline characteristics of treated farmers in V1 and V2 

villages. This comparison is relevant only for year 2 when we divided the treatment villages 

further, with the V2 villages selected for repeat training in year 2. We compare characteristics 

both at baseline and at midline, after all T1 and T2 households had received the same one year of 

training. The year 2 randomization was successful, as there are no significant differences of 

observable household characteristics between the T1 and T2 farmers at baseline (Panel A). Nor 

was there any significant difference in terms of rice yield, cost or profit between T1 and T2 

farmers at either baseline (Panel B) or midline, following the year one harvest, before T2 farmers 

received their second training (Panel C). 

 

Appendix Table A4 provides further evidence that the randomization was successful, now 

concerning village level characteristics. Panel A compares village level characteristics between 

year 1 treatment (T) and control (C) villages, while panel B compares V1 and V2 villages. There 

are no significant differences between either treatment and control villages, or between V1 and 

V2 villages in terms of the size of the village, accessibility, electricity connection, or presence of 

NGOs.  
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Table A2: Baseline characteristics of farmers by treatment status 
        

Panel A  Treatment (T) Control (C)  
p-value  
(T-C) Household Characteristics  Mean Std.dev Mean Std.dev  

Average Age of the household members (above 15 years)  36.72 7.48 36.43 7.56  0.17 
Average Education of the adult member of household (years)  4.32 2.40 4.34 2.39  0.75 
Farm size (cultivable) last Boro season (in decimals)  163.37 159.76 165.93 126.51  0.55 
Household size  5.13 1.87 5.19 1.99  0.24 
Maximum education by any household member  8.53 3.57 8.66 3.68  0.21 
F-stat for joint equality   0.70    
p-value for joint equality   0.62    
Yield, Cost and Profit (per decimal)        
Yield (kg)  22.68 5.08 22.82 5.93  0.18 
Total cost of production (BDT)  368.30 119.88 366.22 136.31  0.41 
Estimated profit (BDT)  511.19 223.72 511.98 253.11  0.88 
F-stat for joint equality   1.05    
p-value for joint equality   0.37    

No. of observations  3630 1856   

  Treatment Villages Only 

Panel B  Treated  
(T1 and T2) 

Untreated  
(U1 and U2) 

 p-value  
(T1/T2-
U1/U2) Household Characteristics  Mean Std.dev Mean Std.dev  

Average Age of the household members (above 15 years)  36.75 7.31 36.69 7.74  0.82 
Average Education of the adult member of household (years)   4.33 2.37 4.29 2.45  0.59 
Farm size (cultivable) last Boro season (in decimals)  161.47 140.84 166.39 185.86  0.37 
Household size  5.09 1.83 5.19 1.93  0.12 
Maximum education by any household member  8.54 3.51 8.52 3.66  0.85 
F-stat for joint equality  0.72   
p-value for joint equality  0.61   
Yield, Cost and Profit (per decimal)        
Yield (kg)  22.69 5.11 22.66 5.03  0.78 
Total cost of production (BDT)  368.09 121.00 368.66 117.92  0.85 
Estimated profit (BDT)  512.08 220.43 509.59 229.57  0.69 
F-stat for joint equality   0.26    
p-value for joint equality   0.86    
No. of observations  2226 1404   

Notes: Panel A compares all farmers in treatment and control villages. Panel B compares only treated farmers with 
those untreated from the same villages. The reported p-values are from the two-tailed test with the null hypothesis 
that the group means are equal. P-value compares the treated and untreated households from the treatment villages.  
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Table A3: Baseline characteristics of farmers by number of treatment rounds 
 Treatment Villages Only 

Variables of Interest One-time  
Training Village  

(T1) 

Two-time 
Training Village  

(T2) 

p-value 
 (T2-T1) 

Panel A; Household Characteristics (Baseline) Mean Std.dev Mean Std.dev  
Average Age of the household members (above 15 years) 36.50 7.45 36.97 7.17 0.13 
Average Education of the adult member of household (years)  4.34 2.38 4.34 2.36 0.94 
Farm size (cultivable) last Boro season (in decimals) 163.11 137.61 159.98 143.76 0.60 
Household size 5.15 1.80 5.03 1.85 0.10 
Maximum education by any household member 8.61 3.54 8.48 3.48 0.38 
F-stat for joint equality  0.60   
p-value for joint equality  0.70   
No. of Observations 1060 1166  
Panel B: Yield, Cost and Profit (Baseline, per decimal)  

Yield (kg) 22.80 4.97 22.59 5.24 0.14 
Total cost of production (BDT) 366.31 118.31 369.76 123.48 0.33 
Estimated profit (BDT) 515.95 212.08 508.53 227.82 0.31 
F-stat for joint equality  0.33   
p-value for joint equality  0.80   
No. of Observations 1060 1166  

Panel C: Yield, Cost and Profit (Midline)  

SRI Adoption 49.72 50.01 49.15 50.00 0.69 
Yield (kg/decimal) 25.99 6.75 25.78 7.33 0.30 
Total cost of production (BDT/decimal) 312.99 104.87 308.45 109.99 0.15 
Estimated profit (BDT/decimal) 643.85 234.15 636.51 229.03 0.28 
F-stat for joint equality  0.36   
p-value for joint equality  0.84   
No. of Observations 993 1051  

Notes: Panel A compares baseline household level characteristics for one time and two-time training villages. Panel 
B compares the same for baseline output, profits, etc. Panel C shows the difference between one-time and two-time 
training farmers’ adoption, yield, cost, etc. during midline to show that the farmers were otherwise similar. Standard 
errors are clustered at the village level. P-value shows level of significance for the difference between farmers in 
villages with one-time and two-time training. 
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Table A4: Village level baseline characteristics- treatment and control villages 

Panel A:  Treatment vs Control Treat (T) Control (C) p-value 
 Mean Std.dev Mean Std.dev (T – C) 
Transport System in village (good=1) 0.325 0.04 0.403 0.06 0.30 
Road in village (brick built=1) 0.300 0.04 0.355 0.06 0.45 
Road between village and Upazila (brick built=1) 0.858 0.03 0.919 0.03 0.23 
Distance between village and nearest Upazila (km) 11.52 0.98 12.35 1.48 0.63 
Number of NGOs in the villages 4.975 0.18 4.820 0.16 0.58 
Number of households in the villages 351.6 33.1 356.1 48.2 0.94 
Electricity connection (yes=1) 0.900 0.03 0.919 0.03 0.67 
F-stat for Joint equality  0.85   
p-value for Joint equality  0.55   
No. of Observations 120 62  
 Treatment Villages Only 

Panel B: V1 vs V2 
Two-time 

training Village (V2) 
One-time 

Training Village (V1) 
p-value 
(V2-V1) 

 Mean Std.dev Mean Std.dev  
Transport System in village (good=1) 0.350 0.06 0.300 0.06 0.56 
Road in village (brick built=1) 0.350 0.06 0.250 0.06 0.24 
Road between village and Upazila (brick built=1) 0.867 0.04 0.850 0.05 0.80 
Distance between village and nearest Upazila (km) 11.23 1.34 11.81 1.41 0.76 
Number of NGOs in the villages 5.017 0.30 4.933 0.21 0.82 
Number of households in the villages 305.53 32.92 396.93 56.84 0.17 
Electricity connection (yes=1) 0.917 0.04 0.883 0.04 0.55 
F-stat for Joint equality  1.24   
p-value for Joint equality  0.29   
No. of Observations 60 60  

Notes: The reported p-values are from the two-tailed test with the null hypothesis that the group means are equal. 
All villages have presence of at least one NGO. 
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Attrition 

Appendix Table A5 reports balance tests to see if sample attrition occurred differentially among 

households with different treatment status. Panel A shows the attrition by treatment status in 

midline. Overall attrition was about 10% (Table A1) but it was slightly, but statistically 

insignificantly, higher (10.4%) in control villages than in treatment villages (9.8%). There is no 

individually nor jointly significant difference in attrition in terms of observed baseline household 

characteristics between treatment and control villages. In panel B, we examine the attrition at 

endline by the treatment status of villages: V1 versus V2 villages. Attrition was a bit higher from 

midline to endline (16.3%, Table A1) than from baseline to midline, and also a bit (but 

insignificantly) higher in V1 villages than V2 villages. When we compare the attrition status 

based on observables at the baseline we again find no individually nor jointly significant 

difference among attritors between treatment and control villages or between V1 and V2 villages. 

We also checked whether attrition is different between farmers who received training (T1 and 

T2) versus those who did not (U1 and U2, panel C, Table A5). Again, there are no statistically 

significant differences across treatment groups.  

 

We also examined the correlates of attrition using attrition status in each round as a dependent 

variable in a linear probability regression model. The results (Appendix Table A6) do not suggest 

any predictor for the attrition that differs by treatment status. We see that larger farms had a 

higher likelihood of attrition. But when we interacted land size with each treatment status, those 

interactions are not individually or jointly statistically significant (results not presented here). 

Thus, there was no obvious candidate for differential attrition due to different treatment statuses. 

Overall, Tables A5 and A6 strongly suggest that attrition is adequately random in our sample and 

should have no impact on causal inference based on the randomization.  
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Table A5: Attrition by treatment status: Balance test 
 Control Treat p-value  

Panel A: End of year 1 (Midline) (1) (2) (2)-(1)  
Average Age of the household members (above 15 years) 37.01 37.04 0.96  
Average Education of the adult member of household (years)  4.36 4.55 0.41  
Farm size (cultivable) last Boro season (in decimals) 141.52 141.10 0.97  
Number of People in the households 4.68 4.91 0.19  
Yield (kg/decimal) 21.76 23.18 0.19  
Total cost of production 363.46 333.79 0.16  
Estimated profit 571.98 505.06 0.16  
F-stat for joint equality 0.58   
p-value for joint equality 0.68   
No. of observations 193 359   
Total sample at the baseline 1856 3630   
  Treatment villages 

p-value 
 Control All  T1 T2 
Panel B: End of year 2 (Endline) (1) (2) 
Average Age of the household members (above 15 years) 36.49 36.83 36.93 37.42 0.58 0.55 
Average Education of the adult member of household (years)  4.12 4.13 4.20 3.89 0.97 0.24 
Farm size (cultivable) last Boro season (in decimals) 144.71 131.46 128.42 123.64 0.10 0.66 
Number of People in the households 4.99 4.83 4.81 4.78 0.23 0.87 
Yield (kg/decimal) 21.82 21.25 21.51 20.61 0.27 0.21 
Total cost of production (BDT/decimal) 357.28 353.15 336.36 355.20 0.75 0.13 
Estimated profit (BDT/decimal) 524.21 494.95 475.12 488.05 0.15 0.67 
No. of observations       
 199 604 187 159  
      

 
Panel C: End of year 2 (Endline)  Control  All treatment Households p-value 

  Overall Treated Untrea
ted 

(1) (2) 

Average Age of the household members (above 15 years) 36.49 36.83 37.16 36.40 0.23 0.90 
Average Education of the adult member of household (years)  4.12 4.13 4.06 4.22 0.41 0.67 
Farm size (cultivable) last Boro season (in decimals) 144.71 131.46 126.22 138.48 0.12 0.50 

Number of People in the households 4.99 4.83 4.79 4.88 0.50 0.48 
Yield (kg/decimal) 21.82 21.25 21.09 21.47 0.47 0.56 
Total cost of production (BDT/decimal) 357.28 353.15 344.87 364.22 0.14 0.69 
Estimated profit (BDT/decimal) 524.21 494.95 480.95 513.94 0.14 0.62 

No. of observations 199 604 346 258   

      
      

Notes: The reported p-values are from the two-tailed test with the null hypothesis that the group means are equal. In 
Panel A, the p-value compares control with all treatment households for year 1 attritors. T1 farmers received training 
in year 1 only. T2 received training in both years- year 1 and year 2. As for Panel B, p-value (1) compares control 
and all treatment households while p-value (2) compares one-time and two-time training households for year 2 
attritors. In Panel C, p-value (1) compares treated and untreated households while p-value (2) compares control and 
untreated households for year 2 attritors.
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Table A6: Attrition Regressions 

 

Note: Attrition between baseline and endline. Note: other controls same as Table 2. Standard errors are clustered at 
the village level. *** p<0.01, ** p<0.05, * p<0.1. 

  

  (1) (2) (3) 
Variables of Interest  Incidence of Attrition  
     
Treatment (Base: Control) 0.037   

 (0.022)   
One-Time training village (V1) (Base: Control)  0.043  

  (0.026)  
Two-Time training village (V2)  0.031  
  (0.027)  
Two-time treated (T2) (Base: T1)   -0.006 
   (0.030) 
Household head’s age greater than 45 0.202*** 0.202*** 0.173*** 
 (0.017) (0.017) (0.025) 
Household head has primary education 0.211*** 0.211*** 0.141*** 
 (0.019) (0.019) (0.030) 
Baseline cultivable land above median -0.091*** -0.091*** -0.098*** 
 (0.013) (0.013) (0.021) 
Baseline monthly household income 0.082* 0.083* 0.065 
 (0.042) (0.042) (0.060) 

    
Observations 5,486 5,486 2,226 
R2 0.098 0.098 0.075 
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 Table A7: ITT Effects of Treatment Saturation Intensity at Endline 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note 2: same as Table 2. 

  

 (1) (2) (3) (4) (5) 
 Adoption Yield Revenue Total Cost Profit 
One-time untreated (U1) 5.997 0.203*** 0.239*** 0.230** 0.231 
 (5.950) (0.064) (0.072) (0.106) (0.292) 
U1F 7.492 -0.137 -0.158 -0.228 -0.049 
 (11.772) (0.129) (0.147) (0.225) (0.603) 
One-time treated (T1) 31.384*** 0.235*** 0.278*** 0.277** 0.335 
 (11.750) (0.081) (0.090) (0.140) (0.309) 
T1F 13.488 -0.167 -0.205 -0.216 -0.213 
 (22.757) (0.146) (0.166) (0.272) (0.562) 
Two-time untreated (U2) -12.342 0.203** 0.235** 0.262** 0.146 
 (7.481) (0.089) (0.104) (0.122) (0.449) 
U2F 49.981*** -0.116 -0.133 -0.239 0.278 
 (17.030) (0.174) (0.201) (0.205) (0.802) 
Two-time treated (T2) 21.727 0.215*** 0.275*** 0.233 0.405 
 (13.505) (0.069) (0.078) (0.154) (0.364) 
T2F 51.698** -0.083 -0.158 -0.129 -0.103 
 (23.543) (0.117) (0.131) (0.270) (0.639) 
Baseline outcome  0.215*** 0.213*** 0.027 0.261*** 
  (0.031) (0.030) (0.033) (0.051) 
Observations 10,286 8,626 8,626 8,626 8,626 
Adjusted R2 0.292 0.086 0.100 0.054 0.039 
      
p-value (U1F-T1F) 0.77 0.82 0.75 0.95 0.75 
p-value (U1F-U2F) 0.04 0.92 0.92 0.97 0.75 
p-value (T1F-T2F) 0.24 0.65 0.82 0.82 0.90 
p-value (U2F-T2F) 0.94 0.83 0.88 0.57 0.57 
Control mean 0.00 21.28 800.57 505.02 295.55 

Note 1: The treatment intensities are fractions of farmers trained in each village (between 0 and 1) and are the same 
for treated and untreated farmers within the same village, where the base category is the control group.  Accordingly, 
U1F is the fraction of the farmers treated in a village multiplied by treatment dummy to denote whether a farmer 
from a V1 village belongs to the U1 treatment group or not, and so on. In the notation, we add the F suffix (e.g., 
U1F), for frequency, so as to distinguish these intensity of treatment variables from the dummy treatment indicators 
used in Table 2.  
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Midline Treatment Effect Estimates 

Table A8: ITT and LATE - Effects of Treatment Status at Midline 

 

Notes: Family labor cost is included in the variables labor cost, total cost and profit using self-assessed wage. Yield, 
cost and revenue are expressed in logarithms. As some of the profits were negative, we ran normal regressions for 
the profit variables and present the estimated coefficients divided by the mean of the control group. The F-stat is 
from the first stage regression. Standard errors are clustered at the village level. *** p<0.01, ** p<0.05, * p<0. 
  

 (1) (2) (3) (4) (5) 
Panel A: ITT  Adoption Yield Revenue Total Cost Profit  
      
One-time untreated (U1) 7.526*** 0.118*** 0.155*** 0.059* 0.318*** 
 (1.222) (0.027) (0.035) (0.032) (0.086) 
One-time treated (T1) 51.139*** 0.160*** 0.190*** 0.081** 0.354*** 
 (3.860) (0.025) (0.030) (0.031) (0.077) 
Two-time untreated (U2) 8.424*** 0.156*** 0.184*** 0.032 0.385*** 
 (1.506) (0.024) (0.031) (0.032) (0.068) 
Two-time treated (T2) 49.260*** 0.148*** 0.166*** 0.050 0.389*** 
 (3.987) (0.028) (0.031) (0.031) (0.076) 
Baseline outcome  0.147*** 0.143*** 0.149*** 0.106*** 
  (0.022) (0.022) (0.029) (0.031) 
Observations 11,515 8,608 8,608 8,608 8,608 
R2 0.324 0.090 0.106 0.086 0.104 
      
p-value (U1-T1) 0.00 0.04 0.14 0.18 0.52 
p-value (U1-U2) 0.64 0.24 0.50 0.38 0.48 
p-value (T1-T2) 0.73 0.72 0.56 0.29 0.71 
p-value (U2-T2) 0.00 0.71 0.44 0.31 0.93 
Panel B: LATE     
Adopted SRI (IV=Treatment status)  0.241*** 0.267*** 0.106** 0.568*** 
  (0.043) (0.050) (0.046) (0.117) 
Baseline outcome  0.172*** 0.167*** 0.160*** 0.138*** 
  (0.025) (0.026) (0.032) (0.036) 
Observations  8,608 8,608 8,608 8,608 
R2  -0.019 -0.053 0.044 -0.051 
Adjusted R2  -0.0209 -0.0556 0.0416 -0.0528 
Hansen J  1.356 1.507 1.970 0.153 
Prob>J  0.244 0.220 0.160 0.695 
F-stat  117.2 118.6 116.7 119.9 
Control mean 0.00 22.36 825.60 442.58 383.02 
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Table A9: ITT and IV – Effects Treatment Intensity at Midline 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Family labor cost is included in the variables labor cost, total cost and profit using self-assessed wage. Yield, 
cost and revenue are expressed in logarithms. As some of the profits were negative, we ran normal regressions for 
the profit variables and present the estimated coefficients divided by the mean of the control group. The treatment 
intensity is the fraction farmers trained within each village (between 0 and 1) multiplied by the treatment indicators 
where the base category is control group. The F-stat is from the first stage regression. Standard errors are clustered 
at the village level. *** p<0.01, ** p<0.05, * p<0. 
  

 (1) (2) (3) (4) (5) 
Panel A: ITT  Adoption Yield Revenue Total Cost Profit  
U1 9.964** 0.128 0.171 -0.008 0.363 
 (4.357) (0.080) (0.113) (0.078) (0.264) 
One-time untreated (U1F) -5.362 -0.022 -0.034 0.146 -0.100 
 (9.342) (0.163) (0.227) (0.149) (0.532) 
T1 26.852* 0.209** 0.270*** 0.004 0.614*** 
 (16.204) (0.084) (0.099) (0.075) (0.226) 
One-time treated (T1F) 45.090 -0.090 -0.149 0.144 -0.481 
 (31.041) (0.155) (0.183) (0.138) (0.415) 
U2 -5.174 0.170** 0.205** 0.041 0.416** 
 (7.140) (0.068) (0.095) (0.079) (0.190) 
Two-time untreated (U2F) 27.554* -0.030 -0.042 -0.018 -0.065 
 (15.681) (0.129) (0.177) (0.139) (0.348) 
T2 23.217 0.266*** 0.347*** 0.121 0.759*** 
 (15.283) (0.074) (0.083) (0.080) (0.228) 
Two-time treated (T2F) 43.864* -0.198 -0.304** -0.119 -0.624 
 (25.730) (0.126) (0.136) (0.135) (0.384) 
Baseline outcome  0.146*** 0.142*** 0.148*** 0.100*** 
  (0.022) (0.022) (0.029) (0.031) 
Observations 11,515 8,608 8,608 8,608 8,608 
R2 0.335 0.092 0.110 0.089 0.110 
      
p-value (U1F-T1F) 0.08 0.68 0.57 0.98 0.44 
p-value (U1F-U2F) 0.07 0.97 0.98 0.42 0.96 
p-value (T1F-T2F) 0.98 0.59 0.50 0.18 0.80 
p-value (U2F-T2F) 0.44 0.16 0.06 0.41 0.06 
Control mean 0.00 22.36 825.60 442.58 383.02 
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Table A10: Nonlinearity in the ITT Effect of Treatment Intensity at Endline (cut-off 
intensity=60%) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Family labor cost is included in the variables labor cost, total cost and profit using self-assessed wage. Yield, 
cost and revenue are expressed in logarithms. As some of the profits were negative, we ran normal regressions for 
the profit variables and present the estimated coefficients divided by the mean of the control group. The treatment 
intensities provide the interaction between treatment status and fraction trained within each village (between 0 and 
1) where the base category is control group. Standard errors are clustered at the village level. *** p<0.01, ** p<0.05, 
* p<0. 

 
  

 (1) (2) (3) (4) (5) 
 Adoption Yield Revenue Total Cost Profit  
U1 6.262 0.218*** 0.254*** 0.213* 0.203 
 (7.723) (0.081) (0.093) (0.122) (0.388) 
One-time untreated (U1F) 6.793 -0.176 -0.199 -0.185 0.029 
 (18.175) (0.194) (0.223) (0.284) (0.904) 
U1F cut-off (more than 60%) 0.360 0.021 0.022 -0.024 -0.041 
 (6.347) (0.076) (0.089) (0.129) (0.375) 
T1 37.777** 0.292*** 0.336*** 0.333* 0.272 
 (16.715) (0.099) (0.114) (0.175) (0.458) 
One-time treated (T1F) -2.218 -0.308 -0.348 -0.356 -0.057 
 (38.815) (0.213) (0.251) (0.379) (1.026) 
T1F cut-off (more than 60%) 5.743 0.052 0.052 0.050 -0.057 
 (12.597) (0.071) (0.084) (0.111) (0.341) 
U2 -10.466 0.063 0.082 0.373*** -0.497 
 (9.323) (0.105) (0.124) (0.134) (0.481) 
Two-time untreated (U2F) 45.165* 0.238 0.253 -0.521** 1.901** 
 (24.628) (0.233) (0.274) (0.263) (0.960) 
U2F cut-off (more than 60%) 2.232 -0.165* -0.180* 0.131 -0.757** 
 (9.395) (0.093) (0.107) (0.090) (0.352) 
T2 20.448 0.120 0.186 0.476** -0.308 
 (19.970) (0.102) (0.118) (0.203) (0.534) 
Two-time treated (T2F) 54.801 0.144 0.054 -0.713* 1.603 
 (44.817) (0.212) (0.245) (0.403) (1.101) 
T2F cut-off (more than 60%) -1.120 -0.079 -0.073 0.203* -0.593* 
 (14.983) (0.074) (0.085) (0.105) (0.357) 
Observations 10,286 8,626 8,626 8,626 8,626 
R2 0.293 0.089 0.103 0.060 0.048 
Control mean 0.00 21.28 800.57 505.02 295.55 
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Robustness Checks Using Plot-level difference-in-differences 

Table A11: Plot level difference-in-differences ITT estimates 
  (1) (2) (3) (4) (5) 
 Adoption Yield Revenue Total Cost Profit  
Treatment Status     
U11 7.089*** 0.137*** 0.175*** -0.010 0.296*** 
 (1.265) (0.038) (0.048) (0.036) (0.094) 
U12 9.193*** 0.160*** 0.183*** 0.041 0.157* 
 (1.976) (0.036) (0.042) (0.055) (0.085) 
U21 8.221*** 0.160*** 0.173*** -0.031 0.332*** 
 (1.450) (0.038) (0.050) (0.036) (0.089) 
U22 12.199*** 0.152*** 0.156*** 0.064 0.185** 
 (2.655) (0.038) (0.046) (0.058) (0.094) 
T11 50.867*** 0.142*** 0.173*** -0.005 0.309*** 
 (4.003) (0.036) (0.046) (0.038) (0.090) 
T12 37.831*** 0.141*** 0.149*** 0.056 0.146* 
 (3.685) (0.037) (0.042) (0.058) (0.083) 
T21 49.165*** 0.161*** 0.173*** -0.021 0.348*** 
 (4.150) (0.040) (0.049) (0.040) (0.092) 
T22 52.868*** 0.177*** 0.183*** 0.069 0.226** 
 (4.382) (0.036) (0.043) (0.062) (0.095) 
      
Observations 33,390 25,972 25,972 25,972 25,972 
R2 0.342 0.042 0.070 0.024 0.110 
Control mean 0.00 22.21 806.97 435.13 371.84 
      
p-value (U11-T11) 0.00 0.81 0.94 0.80 0.82 
p-value (U12-T12) 0.00 0.43 0.18 0.68 0.81 
p-value (T11-T12) 0.00 0.98 0.54 0.14 0.02 
p-value (U11-U12) 0.21 0.54 0.84 0.22 0.05 
      
p-value (U21-T21) 0.00 0.95 0.99 0.71 0.72 
p-value (U22-T22) 0.00 0.27 0.33 0.88 0.48 
p-value (T21-T22) 0.27 0.66 0.77 0.04 0.06 
p-value (U21-U22) 0.15 0.82 0.65 0.04 0.04 

Note 1: Family labor cost is included in the variables labor cost, total cost and profit using self-assessed wage. Yield, 
cost and revenue are expressed in logarithms. As some of the profits were negative, we ran normal regressions for 
the profit variables and present the estimated coefficients divided by the mean of the control group. The row 
corresponding U11 indicates outcomes of untreated farmers from one-time treatment village at the midline, while 
U21 denotes the corresponding outcomes for the untreated farmers from two-time treatment villages at midline.  
Note 2: Same as Table 2. 
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Table A12: Plot level difference-in-differences ITT estimates 
(with continuous treatment intensity) 

  (1) (2) (3) (4) (5) 
 Adoption Yield Revenue Total Cost Profit  
Treatment Status     
U11F 10.683*** 0.205*** 0.253*** -0.024 0.442** 
 (3.226) (0.073) (0.095) (0.076) (0.183) 
U12F 15.800*** 0.239*** 0.262*** 0.003 0.235 
 (4.007) (0.073) (0.086) (0.117) (0.166) 
U21F 14.500*** 0.256*** 0.265*** -0.060 0.525*** 
 (4.255) (0.069) (0.088) (0.067) (0.161) 
U22F 23.423*** 0.229*** 0.228*** 0.060 0.323* 
 (5.949) (0.072) (0.084) (0.102) (0.172) 
T11F 88.845*** 0.198*** 0.232*** -0.018 0.430*** 
 (7.566) (0.063) (0.083) (0.070) (0.157) 
T12F 64.219*** 0.188*** 0.189** 0.026 0.218 
 (7.081) (0.070) (0.081) (0.115) (0.143) 
T21F 78.219*** 0.214*** 0.213*** -0.055 0.475*** 
 (6.886) (0.062) (0.079) (0.071) (0.145) 
T22F 84.228*** 0.241*** 0.239*** 0.052 0.356** 
 (7.139) (0.061) (0.074) (0.114) (0.155) 
      
Observations 33,390 25,972 25,972 25,972 25,972 
R2 0.345 0.036 0.063 0.022 0.105 
Control mean 0.00 22.21 806.97 435.13 371.84 
      
p-value (U11F-T11F) 0.00 0.87 0.70 0.88 0.91 
p-value (U12F-T12F) 0.00 0.27 0.14 0.74 0.85 
p-value (T11F-T12F) 0.00 0.88 0.52 0.57 0.07 
p-value (U11F-U12F) 0.13 0.63 0.90 0.75 0.12 
      
p-value (U21F-T21F) 0.00 0.33 0.33 0.89 0.56 
p-value (U22F-T22F) 0.00 0.78 0.83 0.91 0.75 
p-value (T21F-T22F) 0.30 0.62 0.64 0.15 0.25 
p-value (U21F-U22F) 0.16 0.70 0.58 0.13 0.11 

Note: Family labor cost is included in the variables labor cost, total cost and profit using self-assessed wage. Yield, 
cost and revenue are expressed in logarithms. As some of the profits were negative, we ran normal regressions for 
the profit variables and present the estimated coefficients divided by the mean of the control group. Standard errors 
are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A13: Exploring the LATE exclusion criterion 

  (1) (2) (3) (4) 

Variables of Interest Yield Revenue Total 
Cost Profit  

     
U1 0.136*** 0.164*** 0.123*** 0.210* 

 (0.031) (0.034) (0.046) (0.119) 
T1 0.126*** 0.161*** 0.146*** 0.255* 

 (0.033) (0.036) (0.047) (0.133) 
U2 0.135*** 0.160*** 0.147*** 0.259* 

 (0.035) (0.039) (0.050) (0.155) 
T2 0.145*** 0.173*** 0.172*** 0.313* 

 (0.036) (0.039) (0.053) (0.164) 
U1 X Adopted SRI 0.051 0.020 0.027 -0.007 

 (0.032) (0.033) (0.064) (0.155) 
T1 X Adopted SRI 0.051** 0.018 0.038 -0.094 

 (0.025) (0.027) (0.044) (0.115) 
U2 X Adopted SRI 0.077 0.065 -0.031 0.194 

 (0.066) (0.074) (0.073) (0.202) 
T2 X Adopted SRI 0.040 0.016 -0.030 0.060 

 (0.026) (0.028) (0.045) (0.124) 
Baseline outcome 0.219*** 0.215*** 0.023 0.263*** 

 (0.032) (0.030) (0.034) (0.051) 
     

Observations 8,626 8,626 8,626 8,626 
R2 0.086 0.098 0.052 0.040 

Notes: See Table 2 notes.  
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Table A14: Basic characteristics of different groups of farmer households by adoption status 

 Persistent 
adopters Disadopters Delayed 

adopters Never adopters p-value 
 (1) (2) (3) (4) 
         
Household head age dummy (older than 45 yrs=1) 0.49 0.65 0.61 0.61 0.00 0.69 0.63 0.00 
Household head education dummy (have primary edu=1) 0.58 0.52 0.54 0.49 0.00 0.24 0.42 0.11 
Cultivable land dummy (land>120 decimals=1) 0.62 0.58 0.57 0.53 0.00 0.10 0.70 0.41 
Cultivable land (in decimals) 177.68 177.06 179.97 166.29 0.02 0.06 0.16 0.74 
Monthly Household income (in lakh BDT) 0.11 0.13 0.12 0.14 0.00 0.37 0.09 0.01 
Baseline production (in kg per decimal) 22.35 23.43 21.55 22.72 0.23 0.00 0.00 0.00 
Production at end of year 1 28.30 29.41 25.29 25.81 0.00 0.00 0.67 0.01 
Production at end of year 2 26.04 24.45 26.77 24.76 0.01 0.84 0.00 0.04 
Baseline cost of production  484.48 486.82 447.25 469.18 0.15 0.06 0.01 0.66 
Total cost at the end of year 1  485.67 519.20 440.92 456.12 0.03 0.00 0.00 0.00 
Total cost at the end of year 2  565.70 571.43 660.70 613.52 0.00 0.00 0.14 0.56 
Baseline profit 381.27 461.75 404.31 440.83 0.00 0.07 0.01 0.00 
Profit at end of year 1  544.15 618.50 509.03 543.81 0.89 0.00 0.28 0.00 
Profit at end of year 2  404.03 385.23 374.66 355.12 0.02 0.15 0.36 0.69 
Extent of risk aversiona (risk loving=1) 0.54 0.62 0.67 0.81 0.08 0.98 0.85 0.18 
Cognitive testa (on a scale of 0 to 10) 4.37 4.59 4.38 4.70 0.01 0.52 0.07 0.16 
Memory testa (on a scale of 0 to 10) 5.45 5.74 5.01 5.37 0.43 0.00 0.00 0.01 
         
Sample size- (number of farmers) 556 313 314 1465     

Notes: p-value of the difference between (1) persistent adopters and never adopters, (2) disadopters and never adopters, (3) delayed adopters and never adopters, and (4) 
disadopters and persistent adopters. aThese statistics are available only for the farmers who received SRI training, as these tests were conducted during the training activity.   
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Table A15: Test for Heterogeneous ITT effects 
 Adoption Yield Revenue Total Cost Profit 
Baseline production (BY) -0.566 0.050 0.043 0.155*** 0.005 
 (0.484) (0.034) (0.035) (0.039) (0.113) 
U1*BY 2.561 0.007 0.023 -0.258*** 0.455*** 
 (3.845) (0.044) (0.046) (0.058) (0.154) 
T1*BY -5.949 -0.069 -0.055 -0.331*** 0.501*** 
 (4.597) (0.047) (0.052) (0.050) (0.153) 
U2*BY -4.595 -0.051 -0.044 -0.264*** 0.363* 
 (3.955) (0.049) (0.053) (0.063) (0.211) 
T2*BY -7.633 -0.069 -0.062 -0.289*** 0.371** 
 (5.738) (0.042) (0.045) (0.052) (0.147) 
Observations 10,215 8,626 8,626 8,626 8,626 
R2 0.284 0.087 0.099 0.084 0.059 

Baseline cultivable land (BCL) 
     

0.265 0.067*** 0.066** 0.065*** 0.040 
 (0.521) (0.026) (0.026) (0.023) (0.070) 
U1*BCL 0.797 -0.015 -0.020 -0.021 -0.028 
 (2.960) (0.038) (0.039) (0.046) (0.128) 
T1*BCL 2.939 -0.081** -0.096** -0.046 -0.208 
 (4.489) (0.040) (0.042) (0.046) (0.133) 
U2*BCL 10.965*** -0.052 -0.060 -0.005 -0.143 
 (3.769) (0.044) (0.046) (0.044) (0.143) 
T2*BCL 6.604 -0.068** -0.073** -0.028 -0.092 
 (4.194) (0.032) (0.033) (0.040) (0.114) 
Observations 10,286 8,626 8,626 8,626 8,626 
R2 0.283 0.086 0.100 0.051 0.040 

Baseline Household size (BHS) 
     

1.589 -0.004 -0.010 -0.027 0.024 
 (1.209) (0.017) (0.017) (0.024) (0.058) 
U1*BHS -0.916 -0.057* -0.055* -0.013 -0.036 
 (2.424) (0.031) (0.033) (0.049) (0.131) 
T1*BHS 8.401** 0.027 0.032 0.037 -0.032 

 (3.732) (0.036) (0.037) (0.042) (0.121) 
U2*BHS -4.780 -0.029 -0.024 0.015 -0.078 
 (3.280) (0.035) (0.037) (0.046) (0.134) 
T2*BHS -1.801 0.022 0.026 -0.028 0.106 

 (3.878) (0.028) (0.028) (0.040) (0.095) 
Observations 10,286 8,626 8,626 8,626 8,626 
R2 0.284 0.085 0.099 0.052 0.039 

Baseline Working adults (BWA) 
     

3.551** 0.006 0.003 -0.016 0.056 
 (1.367) (0.020) (0.020) (0.024) (0.060) 
U1*BWA -1.516 -0.029 -0.034 -0.003 -0.052 
 (2.347) (0.032) (0.032) (0.046) (0.125) 
T1*BWA 0.532 -0.014 -0.013 0.004 -0.083 
 (3.546) (0.035) (0.037) (0.036) (0.109) 
U2*BWA 1.532 -0.010 -0.008 0.048 -0.122 
 (3.593) (0.036) (0.038) (0.048) (0.138) 
T2*BWA -8.803** -0.031 -0.024 0.014 -0.093 
 (3.952) (0.028) (0.029) (0.032) (0.086) 
Observations 10,286 8,626 8,626 8,626 8,626 
R2 0.283 0.084 0.097 0.051 0.039 
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 Adoption Yield Revenue Total Cost Profit 
Baseline Household Income (BHI) -1.012 0.052** 0.060*** 0.092*** -0.052 
 (0.721) (0.022) (0.023) (0.030) (0.072) 
U1*BHI -6.552** -0.013 0.005 -0.061 0.128 
 (3.315) (0.038) (0.039) (0.045) (0.119) 
T1*BHI -6.663 0.025 0.040 -0.076* 0.255** 
 (4.117) (0.036) (0.037) (0.043) (0.118) 
U2*BHI -1.041 -0.004 0.013 -0.096** 0.258* 
 (4.497) (0.045) (0.049) (0.047) (0.155) 
T2*BHI -13.760*** 0.015 0.027 -0.008 0.093 
 (4.045) (0.032) (0.035) (0.044) (0.115) 
Observations 10,286 8,626 8,626 8,626 8,626 
R2 0.288 0.089 0.104 0.057 0.041 

Notes: Family labor cost is included in the variables labor cost, total cost and profit using self-assessed wage. Yield, 
cost and revenue are expressed in logarithms. As some of the profits were negative, we ran normal regressions for 
the profit variables and present the estimated coefficients divided by the mean of the control group. Standard errors 
are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.01. We do not report the coefficients on the treatment status 
dummies. They are similar to those presented in Table 2 in all four regressions.  
 
  



63 
 

Table A16: Quantile Regression Estimates 
  Yield Revenue 
Panel A: Treatment Status 0.25 0.5 0.75 0.25 0.5 0.75 
One-time untreated (U1)  0.143*** 0.120*** 0.143*** 0.175*** 0.133*** 0.173*** 
  (0.015) (0.009) (0.010) (0.015) (0.008) (0.007) 
One-time treated (T1)  0.142*** 0.127*** 0.167*** 0.166*** 0.152*** 0.191*** 
  (0.014) (0.007) (0.007) (0.021) (0.007) (0.008) 
Two-time untreated (U2)  0.143*** 0.125*** 0.159*** 0.161*** 0.145*** 0.191*** 
  (0.018) (0.011) (0.010) (0.022) (0.012) (0.013) 
Two-time treated (T2)  0.157*** 0.141*** 0.174*** 0.177*** 0.157*** 0.194*** 
  (0.013) (0.008) (0.009) (0.020) (0.010) (0.007) 
Observations  8,626 8,626 8,626 8,626 8,626 8,626 
Panel B:   Total Cost Profit 
One-time untreated (U1)  0.153*** 0.147*** 0.162*** 0.094 0.122*** 0.329*** 
  (0.020) (0.020) (0.027) (0.073) (0.043) (0.064) 
One-time treated (T1)  0.150*** 0.172*** 0.238*** -0.002 0.095** 0.357*** 
  (0.014) (0.011) (0.016) (0.048) (0.038) (0.029) 
Two-time untreated (U2)  0.167*** 0.146*** 0.169*** 0.040 0.184*** 0.400*** 
  (0.015) (0.019) (0.021) (0.066) (0.058) (0.055) 
Two-time treated (T2)  0.149*** 0.171*** 0.211*** -0.023 0.201*** 0.404*** 
  (0.016) (0.014) (0.021) (0.053) (0.034) (0.033) 
Observations  8,626 8,626 8,626 8,626 8,626 8,626 

Note: Family labor cost is included in the variables labor cost, total cost and profit using self-assessed wage. Yield, 
cost and revenue are expressed in logarithms. As some of the profits were negative, we ran normal regressions for 
the profit variables and present the estimated coefficients divided by the mean of the control group. Standard errors 
are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1. 
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Farmers’ adjustments of practices 

We explore the question of farmer learning by studying how adherence to the six SRI principles 

taught in BRAC training varies with exposure intensity, including one’s own experience with the 

practice (i.e., learning by doing), from midline to endline. We have already established that the 

greater a farmer’s exposure to SRI training, the more likely he is to adopt the SRI principles. But 

we have also seen that farmers do not fully adhere to the principles as taught. For example, while 

all the treatment arm groups transplant younger seedlings than do control farmers (Table 1), few 

go so far as to transplant as young as 20 days, the BRAC recommendation. By exploring farmers’ 

adjustment of rice cultivation practices in response to SRI training exposure and own experience, 

we can perhaps gain some further insights on the learning processes occurring within this sample.  

 

Toward that end, we estimate a plot-level panel regression using all three waves of data (i.e., 

baseline, midline, endline) following equation (3), with a binary variable for adoption of different 

SRI principles as the outcome variables of interest. The estimation results are presented in Tables 

A17 and A18. The takeaway from these tables is that learning the practices seems to occur mainly 

from direct training by BRAC agents, to a lesser degree from learning from other farmers, and 

least from learning by doing. Direct trainees are significantly more likely to follow each of the 

six recommended practices than are control farmers at midline, post-training. With the exception 

of using mechanical weeders or the AWD water management method, direct trainees are also 

statistically significantly more likely than untrained farmers in training villages to follow each 

principle at midline. But there was no statistically significant difference in compliance between 

T1 and T2 farmers at midline in any principle, consistent with them having received exactly the 

same exposure to SRI at that point in time. But other than modestly wider spacing among 

seedlings and increased use of mechanical weeders, the T1 farmers did not significantly increase 

adherence to SRI training between midline and endline, in the absence of further training. They 

exhibit little learning by doing nor from others following their and their neighbors’ initial year of 

experience with SRI. The U1 and U2 farmers did see modest, but jointly statistically significant, 

increases in adherence to the key three SRI principles (age, number and spacing of transplanted 

seedlings) from midline to endline, consistent with the lagged adoption impacts observed earlier 

as these farmers learned SRI from their BRAC-trained neighbors.  

 

By contrast, the T2 farmers significantly increased adherence to each of the six principles from 

midline to endline, with the exception of AWD water management, which increased, but 

insignificantly. Limited adherence to that specific principle may arise because coordinating 
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irrigation among farmers proved an obstacle, as a number of participants told us. Increased 

adherence among the T2 farmers relative to T1 farmers from midline to endline suggests the 

importance of formal extension programming to advance learning about the method, even of the 

short duration in this experiment, much as Moser and Barrett (2006) found in observational data 

in Madagascar. Even so, these adjustments were far more modest than overall adoption, and 

outcomes did not improve significantly for T2 farmers from midline to endline, relative to the 

other groups (Table A17).  

 

Overall, the story is one of limited independent learning outside of BRAC’s formal SRI extension 

effort within villages. The lone exception is the spacing of seedlings, which, along with AWD 

water management, is the most easily visible change of practice from traditional to SRI rice 

cultivation and thus most likely to be absorbed through passive learning from others. 
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Table A17: Plot level difference-in-differences estimates for SRI principles 

  (1) (2) (3) (4) (5) (6) 

 
Age of 

seedlings 
No of 

seedlings 

Distance 
between 
seedlings 

Alternate 
drying & 
wetting 

Use of 
organic 
fertilizer 

Mechanical 
weeding 

Treatment Status      
U11 -0.152 2.099 1.749** 12.959* 1.740 -1.714 
 (0.278) (3.853) (0.861) (6.867) (2.710) (1.062) 
U12 1.915* 2.886 5.719*** 3.895 10.881** 9.500*** 
 (1.043) (4.013) (1.466) (7.504) (4.294) (3.255) 
U21 0.058 5.385 4.143*** 11.568 4.670* -2.201** 
 (0.332) (4.174) (1.433) (7.157) (2.744) (0.970) 
U22 0.721 7.769* 9.774*** 17.859** 11.365*** 4.617** 
 (0.638) (4.646) (2.116) (7.347) (4.348) (2.008) 
T11 3.344*** 15.138*** 15.546*** 20.315*** 10.560*** 0.519 
 (0.821) (3.847) (1.988) (6.541) (3.363) (1.567) 
T12 4.067*** 20.486*** 24.318*** 11.245 14.480*** 12.330*** 
 (1.210) (4.701) (3.061) (7.366) (3.918) (3.579) 
T21 2.306*** 15.008*** 14.127*** 18.304*** 12.162*** -0.741 
 (0.566) (3.851) (1.683) (6.528) (3.579) (1.145) 
T22 5.794*** 24.850*** 30.035*** 22.394*** 21.448*** 9.075*** 
 (1.316) (4.568) (3.256) (7.014) (3.996) (2.809) 
       
Observations 32,244 32,244 32,244 32,244 32,244 32,244 
R2 0.024 0.155 0.132 0.495 0.120 0.068 
Control mean 0.31 7.35 0.30 32.08 5.38 1.20 
       
p-value (U11-T11) 0.00 0.00 0.00 0.05 0.00 0.02 
p-value (U12-T12) 0.06 0.00 0.00 0.07 0.26 0.36 
p-value (T11-T12) 0.56 0.04 0.00 0.04 0.27 0.00 
p-value (U11-U12) 0.04 0.73 0.00 0.11 0.01 0.00 
       
p-value (U21-T21) 0.00 0.00 0.00 0.06 0.00 0.03 
p-value (U22-T22) 0.00 0.00 0.00 0.18 0.00 0.02 
p-value (T21-T22) 0.01 0.00 0.00 0.32 0.02 0.00 
p-value (U21-U22) 0.24 0.27 0.00 0.24 0.09 0.00 

Notes: The first character of the treatment status identifier indicates trained (T) or untrained but resident in training 
village (U). The second character indicates the number of years of training in the village. The third character indicates 
year, either midline (1) or endline (2), as compared to the omitted baseline (0). Each of these outcome variables is a 
dummy variable (multiplied by 100) indicating if a farmer followed that principle as recommended by BRAC for 
SRI. Standard errors are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A18: Plot level difference-in-differences for different SRI principles 
(with continuous treatment intensity) 

  (1) (2) (3) (4) (5) (6) 

 
Age of 

seedlings 
No of 

seedlings 

Distance 
between 
seedlings 

Alternate 
drying & 
wetting 

Use of 
organic 
fertilizer 

Machine 
based 

weeding 
Treatment Status       
U11F -0.451 6.173 3.511* 18.103 3.090 -2.139 
 (0.671) (7.515) (1.938) (12.392) (5.069) (2.431) 
U12F 5.190** 5.214 10.085*** 5.855 16.178* 16.494*** 
 (2.136) (7.222) (3.028) (13.833) (8.221) (5.902) 
U21F 0.179 11.243 8.541*** 17.978 10.344* -3.577** 
 (0.890) (7.253) (3.038) (12.081) (5.497) (1.654) 
U22F 2.746 15.113* 18.122*** 28.746** 15.694** 6.936 
 (1.810) (8.206) (4.452) (12.911) (7.303) (4.710) 
T11F 5.741*** 28.543*** 28.442*** 32.140*** 20.208*** 2.424 
 (1.442) (7.138) (3.706) (10.822) (6.590) (3.418) 
T12F 8.690*** 38.283*** 42.831*** 16.671 21.566*** 19.172*** 
 (2.599) (9.036) (6.020) (12.341) (7.591) (7.239) 
T21F 3.362*** 25.777*** 23.060*** 25.361** 20.987*** -0.432 
 (0.847) (6.193) (2.888) (9.926) (6.303) (1.801) 
T22F 10.537*** 41.021*** 47.804*** 33.846*** 30.482*** 12.980** 
 (2.642) (7.830) (5.676) (10.414) (6.652) (5.177) 
       
Observations 32,244 32,244 32,244 32,244 32,244 32,244 

R2 0.026 0.158 0.133 0.493 0.117 0.062 
Control mean 0.31 7.35 0.30 32.08 5.38 1.20 
       
p-value (U11F-T11F) 0.00 0.00 0.00 0.03 0.00 0.02 
p-value (U12F-T12F) 0.13 0.00 0.00 0.15 0.35 0.64 
p-value (T11F-T12F) 0.26 0.04 0.00 0.06 0.83 0.00 
p-value (U11F-U12F) 0.01 0.84 0.00 0.29 0.07 0.00 
       
p-value (U21F-T21F) 0.00 0.00 0.00 0.27 0.02 0.01 
p-value (U22F-T22F) 0.00 0.00 0.00 0.45 0.00 0.06 
p-value (T21F-T22F) 0.01 0.00 0.00 0.18 0.17 0.00 
p-value (U21F-U22F) 0.07 0.36 0.01 0.28 0.45 0.03 
Notes: Each of these outcome variables are dummy variables (multiplied by 100) indicating if a farmer followed 
that principle as recommended by BRAC for SRI. Standard errors are clustered at the village level. *** p<0.01, ** 
p<0.05, * p<0.1. 
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Figure A1: The distribution of the number of treated farmers across treated villages 
 

 
 

Note: Each of the four treatment groups (U1, U2, T1 and T2) first order stochastically dominates the control group 
(C) based on Somers’ D statistic. But none of the treatment groups first, second, or third order stochastically 
dominates any other treatment group. 

 
Figure A2: Cumulative distribution function of midline production per decimal of land  
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Note: Each of the four treatment groups (U1, U2, T1 and T2) first order stochastically dominates the control group 
(C) based on Somers’ D statistic. But none of the treatment groups first, second, or third order stochastically 
dominates any other treatment group. 
 

Figure A3: Cumulative distribution function of endline production per decimal of land 

 

 
 

Note: None of the treatment groups first, second, or third order stochastically dominates any other treatment group. 
 

Figure A4: Cumulative distribution function of midline production per decimal of land 
for SRI adopters 
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Note: None of the treatment groups first, second, or third order stochastically dominates any other treatment group. 
 
Figure A5: Cumulative distribution function of endline production per decimal of land for 

non-adopters 
 

 
 

Notes: p-value associated with Somers’ D test for first order stochastic dominance for U1(adopted-did not adopt) 
=0.38, T1(adopted-did not adopt) =0.07, U2 (adopted-did not adopt) =0.51 and T2(adopted-did not adopt) =0.16. No 
second or third order stochastic dominance exists either. 
 
Figure A6: Cumulative distribution function of midline production per decimal of land by 

treatment and adoption status 
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Figure A7: Quantile regression for endline yield 
 

 
 

Note: The endline profits using profit which consider the imputed cost of family labour. 
 

Figure A8: Quantile regression based on end profits (adjusted for family labor) 
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Figure A9: Quartile regressions based on baseline land size 
 
 
 
 
 

 
 

 
Figure A10: Quartile regressions based on adult working members 
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Figure A11: Productivity by disadoption status 
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