Heterogeneous Constraints and Incentives and the Uptake of Agricultural Innovations by Smallholder Farmers

Christopher B. Barrett, Cornell University
USAID workshop on “Exploring the Disparities between Smallholder Practice and Potential”
Washington, DC, November 3, 2016
LSMS-ISA data show that uptake of modern ag inputs varies markedly, both within and among countries. (Sheahan & Barrett, *FP* in press)
Poor but efficient revisited

Observations of smallholder inefficiency often reflect failure to control for variation in natural conditions uncontrollable by farmer.

Ex: Ivorien rice farmers – median is on PPF w/ control for soils, rain, pests, etc. vs. 52% w/o (Sherlund, Barrett & Adesina JDE 2002)

If smallholders really are poor but efficient, perhaps non-uptake is optimal as well??

Fig. 2. Distribution functions for estimated plot-specific technical efficiencies.
Likely reflects heterogeneous returns

Probably relatedly, a number of recent studies find spatially heterogeneous returns to inputs:

- Suri (*EMTRA 2011*) – Kenya hybrid maize seed
- McCullough et al. (WP 2016) - Ethiopia fertilizer
- Burke et al. (*AgEcon 2016*) - Zambia fertilizer
- Harou et al. (*JAfrEcon in press*) - Malawi fertilizer

https://www.ag-analytics.org/AgRiskManagement/EthiopiaGeoApp
Disadoption rates often high

If ag innovations always superior, we should see negligible disadoption. But disadoption common.

Example: System of Rice Intensification (SRI)
In spite of 60-80% true yield gains often found:
- Haiti (Turiansky WP 2016)
- Indonesia (Takahashi & Barrett AJAE 2014)
- Madagascar (Moser & Barrett AgEcon 2006)
1. Nature limits profitability

The profitability of modern ag inputs commonly depends on natural endowments:

- Soil quality
 - Soil organic carbon, other nutrients, Ph (Marenya & Barrett AJAE/AgEcon 2009, Suri EMTRA 2011, Harou et al. Ag Econ in press, Burke et al. Ag Econ 2016, Harou et al. JAfrEcon in press)
 - Within-village variability in soil quality also impedes learning (Tjernstrom WP 2015)

- Water (irrigation, rainfall, soil water retention capacity, evapotranspiration)

- Temperature, altitude and growing season length

- Biotic and abiotic stresses (e.g., aluminum, iron, salt, striga)

Agroecological niches therefore crucial to suitability/profitability
1. Nature’s complementary inputs

Example: Soil degradation in Kenya Marginal returns to fertilizer application low on degraded soils; and poorest farmers are on the most degraded soils. Soil degradation also feeds a striga weed problem that discourages uptake ($7bn/yr in crop losses).

Marenya & Barrett *AJAE* 2009
2. Labor availability

Many agricultural innovations also require labor availability (hh or hired).

Examples:

SRI (Haiti, Madagascar, Indonesia, Timor Leste – Moser & Barrett Ag Econ 2006; Noltze et al. EcolEcon 2012; Takahashi & Barrett AJAE 2014, Turiansky WP 2016)

Mucuna (Honduras, Neill & Lee EDCC 2001)

Herd splitting among pastoralists(Toth AJAE 2014)
3. Gender

Male-run plots more likely to use modern inputs (Sheahan & Barrett *FP* in press).

Returns to inputs appear lower for female farmers (due to social norms on labor and market access, etc.)
4. Market access and prices

Market access:
Transport costs and reliable access to intermediaries drive input/output prices
Omamo (AJAE 1996)

Fuel prices have a big impact on food prices due to infrastructure deficiencies
(Dillon & Barrett AJAE 2016)

Burkina Faso school feeding program and cowpeas (Harou et al. WD 2013) – trader seasonality, market access and bulking
Two puzzles: Uneven adoption within hhs
Ex 1 - Limited joint input application

LSMS-ISA data show little joint uptake of modern ag inputs despite agronomic synergies and contrary to ISFM principles.

(Sheahan & Barrett, FP in press)
Plot-level inverse size-productivity relation

Plot-level input application and productivity varies inversely w/plot size. True within-hh and w/controls for soil quality and actual size, so not due to ORV, measurement error, or heterogeneous shadow prices.

Adoption varies even across plots w/n hh ... why? Edge effects hypothesis?

(Barrett, Bellemare & Hou WD 2010; Carletto, Savastano & Zezza JDE 2013; Sheahan & Barrett, FP in press; Bevis & Barrett, 2016 WP)
Key implications

1. Context matters
- Best technologies vary among farmers, even among plots ... one size fits all rarely works
- Agroecological niches crucially important
- Physical and institutional infrastructure likewise affect incentives and constraints
- Lots of focus on developing new technologies ... but *adaptation* to agro-ecological niches is equally important
 - Requires adequate local applied scientific research capacity
 - Requires companies with incentive to invest in adaptive research
Key implications

2. Bundled approaches often needed
 - Multiple constraints often bind (nested or simultaneously)
 - Second-limiting factors can limit gains from new technologies (e.g., Bt cotton in China)
 - Success of BRAC ultra-poor programs (Bandiera et al. WP 2016, Banerjee et al. Science 2015)
 - Often need to address market access and modern inputs simultaneously
 - Contract farming can help leverage private capital: e.g., sugar farms in Kenya; vegetables in Madagascar
Key implications

3. Need to be intentional about gender

- Technology development/adaptation need to pay more attention to gender
- Crop selection – vegetables, small livestock – is a major issue. Cereals focus may be limiting.
Thank you for your interest and comments!