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Abstract: The number of index insurance pilots in developing countries has 

grown tremendously in recent years, but there has been little progress in our 

understanding of the quality of those products. Basis risk, or remaining uninsured 

risk, is a widely recognized, but rarely measured feature of index insurance 

product quality. This research uses eight semi-annual seasons of longitudinal 

household data to examine the distribution of basis risk associated with an index 

based livestock insurance (IBLI) product in northern Kenya. We find that IBLI 

coverage reduces exposure to covariate risk due to large shocks and mitigates 

downside risk substantially for many households, even at commercial premium 

rates. But index insurance is no magic bullet; insured households continue to face 

considerable and mostly random idiosyncratic risk. This research underscores 

both the promise and the need for caution when promoting index insurance as a 

risk mitigation tool and the importance of product quality evaluation. 
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Recent years have seen a surge in the promotion and piloting of index insurance 

projects for agricultural households in developing countries. Unfortunately, most pilot 

projects have met with extremely low demand, even when premiums have been subsidized 

and extension efforts have been included. Basis risk, or residual risk not covered by an 

index insurance product, is often cited as a likely cause of low demand (e.g., Smith and 

Watts 2009; Hazell and Hess 2010; Miranda and Farrin 2012) and has even been called 

“the most serious obstacle to the effectiveness of weather index insurance as a general 

agricultural risk management tool” (Miranda and Farrin 2012, p.48).  

Product design and basis risk have been studied quite extensively within the 

agricultural finance and insurance literature in the context of index insurance (or weather 

derivatives) for crops in developed economies (e.g., Miranda 1991; Williams et al. 1993; 

Smith, Chouinard, and Baquet 1994; Mahul 1999; Turvey 2001; Vedenov and Barnett 

2004; Woodard and Garcia 2008; Turvey and Mclaurin 2012). But those findings might 

not generalize to the developing country context, where basis risk remains remarkably 

under-researched. In a few cases authors use clever approaches to proxy for basis risk in 

studying the demand for index insurance (Giné, Townsend, and Vickery 2008; Mobarak 

and Rosenzweig 2012; Hill, Robles, and Cebellos 2013). Other articles use simulations, 

aggregate-level data, and/or experiments to examine basis risk (e.g., Breustedt, Bokusheva, 

and Heidelback 2008; Clarke 2011; Norton, Turvey, and Osgood 2012; Elabed et al. 2013; 

Dercon et al. 2014; Leblois, Quirion, and Sultan 2014). These studies can say little or 

nothing, however, about the relative magnitude or distribution of basis risk among 

households. To date, no study of index insurance products in developing countries offers 

household-level estimates of basis risk. This article fills that important void. 

The lack of empirical attention to basis risk is especially disturbing because there is no 

guarantee that index insurance is risk reducing. In cases where an individual’s idiosyncratic 

risk is high or if the index is inaccurate, index products can represent a costly, risk-

increasing gamble rather than the risk-reducing insurance implied by their name and 

claimed by their underwriters. Discerning the magnitude and distribution of basis risk 
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should be of utmost importance for organizations promoting index insurance products, lest 

they inadvertently peddle lottery tickets under an insurance label.  

The Index Based Livestock Insurance (IBLI) product was developed and commercially 

piloted among pastoralists in the Marsabit region of northern Kenya in 2010 (Chantarat et 

al. 2013). The IBLI index predicts division average livestock mortality rates using an 

innovative response function that was generated econometrically using historical data on 

household herd losses specifically with the objective of minimizing basis risk. Because the 

IBLI index is measured in the same units as the insurable household losses, it allows for 

the direct estimation of the magnitude and cross-sectional heterogeneity of basis risk. If 

basis risk significantly limits the benefits from IBLI, one might naturally wonder whether 

other products, not designed using statistical methods to minimize basis risk, might suffer 

similar or worse shortcomings.  

This article uses a four-year household panel dataset, which includes eight distinct 

semi-annual seasons of index values and household-level loss data, to examine the 

magnitude and components of basis risk that pastoralists would have faced if they had fully 

insured with IBLI over the entire survey period. Specifically, we compare households’ 

reported livestock survival rate to the net of their reported survival rate, premium, and 

indemnity payments. Although our household-specific risk and basis risk parameter 

estimates prospectively suffer from small sample and endogeneity bias as we do not 

observe unrealized states of nature nor the true counterfactual livestock survival rates 

experienced by insured (uninsured) households in the absence of (with) insurance, these 

eight-season estimates relating endogenous livestock survival rates to index values 

represent a vast improvement over the current absence of estimates.1  

Using standard approaches that are often used to study index insurance in high-income 

economies, we find that IBLI coverage significantly increases variance in livestock 

                                                 

 

1 The small sample concern is related to non-representative weather events during the seasons observed in 

the data. Of the eight observed seasons, one was a severe drought that affected the entire region and has been 

widely referred to as a 1-in-60-year drought. In addition, there were less severe droughts in two other seasons. 

Thus drought conditions may be unintentionally overrepresented in the survey data. 
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survival rates by an average of 2.3% but improves skewness in survival rates by 37.6% 

(from -1.18 to -0.735). Focusing on downside risk, we find that IBLI reduces exposure to 

large shocks for 41.9%, 47.9% and 62.4% of households when premium rates are set at the 

commercial (loaded and unsubsidized) rate, the actuarially fair rate, and the subsidized rate 

actually offered to pastoralists, respectively. The variation in beneficiaries highlights the 

vital role that premium rates play in determining the benefits of insurance, which can be 

easily overlooked with simple variance analysis.  

We then examine the components of basis risk and the factors that contribute to their 

heterogeneity. IBLI coverage reduces households’ exposure to risk associated with large 

covariate shocks by an average of 63.2%, indicating incomplete coverage due to some 

design risk. A second, much larger, portion of basis risk arises due to idiosyncratic losses. 

Although droughts, which represent insurable covariate risk, are the largest reported cause 

of livestock mortality, there is considerable variation between households in livestock 

mortality rate experienced in every season. Regression analysis of this idiosyncratic risk 

finds that very little of it can be explained by household characteristics or by accounting 

for local fixed effects. By design IBLI can do nothing about this remaining seemingly 

random idiosyncratic risk and there are no clear avenues for using client-type specific 

indices to reduce it.  

We also find that the degree of covariate risk is closely tied to how covariate losses are 

defined spatially and temporally. The degree of geographic heterogeneity in the relative 

importance of covariate shocks points towards regions where IBLI may be more or less 

well suited to reducing the covariate risk associated with livestock mortality. 

This article links the established work on agricultural index insurance products in 

higher income economies with the emerging literature on index insurance in developing 

economies while also providing a benchmark for basis risk that is useful for index 

insurance products more broadly. Our results underscore the dangers of assuming that 

cleverly designed financial instruments always perform as advertised. Given the 

burgeoning interest in index insurance within the development, finance, and agricultural 
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communities, and the glaring dearth of evidence on basis risk in these products, our 

findings offer a cautionary tale to researchers and practitioners alike.  

The rest of the article is structured as follows. We begin with an examination of the 

components of basis risk in Section 2. Section 3 describes the context, the IBLI product, 

and data. Section 4 examines the simulated impact that IBLI coverage has on the 

distribution of outcomes that households face. We then decompose basis risk into its 

various components in order to reveal which factors drive the product’s imperfect 

performance and which are associated with idiosyncratic losses. We conclude in Section 5 

with a discussion of the implications of our findings for IBLI and other index insurance 

products.  

Basis Risk 

Multiple factors have led to the current dearth of empirical estimates of basis risk in 

developing countries. First, longitudinal household data are required in order to identify 

the distribution of basis risk. Because administrative cost savings from reduced data 

collection are a key selling point of index insurance, such data are commonly lacking. 

Second, there are multiple measures of basis risk and it is not obvious which metric is most 

salient to potential consumers or to which aspects of basis risk insurance providers should 

pay most attention. To complicate matters further, indemnity payments may improve the 

net expected outcome while increasing its variance by over-indemnifying losses, which 

reduces the usefulness of mean-variance analysis, a method commonly used to examine 

risky choices. Finally, most index insurance policies use an index measured in units 

fundamentally different from the ultimate objective of insurance – stabilizing wealth or 

income – as in the case of weather insurance contracts that aim to insure against crop loss; 

this mismatch significantly complicates the estimation of basis risk.  

Tests for stochastic dominance offers one intuitive approach for thinking about the 

value of insurance and basis risk. Conventional, loss-indemnifying, insurance coverage 

that is priced to be actuarially fair and has no deductible weakly second-order stochastically 

dominates no insurance because it transfers resources from periods with good outcomes to 
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periods with poor outcomes at no cost. A similar index insurance contract (i.e., actuarially 

fair with no deductible) with no basis risk would do the same, intertemporally transferring 

risk at no cost to weakly stochastically dominate the no insurance alternative.  

But such product designs are abstractions from the real world of commercially loaded 

(i.e., not actuarially fair) policies with deductibles (or, equivalently, non-zero strike levels) 

and basis risk. If we allow for basis risk, there is no assurance that an index insurance 

product reduces risk exposure. Due to this positive probability of increases to risk, index 

insurance does not necessarily weakly second order stochastically dominate the no 

insurance alternative. That is, a risk averse individual may prefer no insurance over index 

insurance with the possibility of basis risk, even at actuarially fair premium rates.  

Once overhead costs (loadings) are included, even conventional loss-indemnifying 

insurance can be stochastically dominated by a no insurance state. In fact, the extremely 

high cost of monitoring and verification has made conventional insurance loadings so high 

that it is nearly impossible to sustain commercially in many low income situations, such as 

to smallholder farmers or pastoralists in remote locations. It is specifically this dilemma 

that index insurance attempts to address by providing low cost insurance based on 

exogenous indicators of covariate shocks and indemnity payment schedules that require 

little (or no) verification. 

Since most consumers face loaded premium rates and basis risk is practically 

inevitable, arguably even optimal given costly data collection, this makes the social value 

of index insurance an intrinsically empirical question because there exist many contracts 

with basis risk that could offer valuable risk mitigation services to clients. And, because 

individuals do not face identical losses, products may be risk increasing for some 

individuals while for others they are risk reducing. Put differently, index insurance with 

basis risk might be a targetable product. The welfare effect of index insurance contracts 

and the distributional profile of those effects among heterogeneous agents are thus also 

inherently empirical questions. The existing literature has not yet explored these issues.  

The remainder of this section develops a framework for examining basis risk. We 

deviate from the commonly used model for index insurance developed by Miranda (1991) 
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in order to more clearly separate basis risk into its idiosyncratic and design components. 

Section 4 draws on this framework to empirically examine those components and learn 

about the factors that contribute to each.  

As a stylized example, let individual i living in a spatially defined division d experience 

losses in period t at rate 𝐿𝑖,𝑑,𝑡.2,3 Large scale events such as drought or floods can generate 

losses across many individuals in the same area. Such covariate losses are reflected in �̅�𝑑,𝑡, 

the average or covariate losses in area d at time t. An individual’s losses can then be divided 

into covariate losses and a remaining idiosyncratic component (𝐿𝑖,𝑑,𝑡 − �̅�𝑑,𝑡).  

The variance in loss rates that an individual faces over time (𝑉𝑎𝑟𝑡[𝐿𝑖,𝑑,𝑡]) is one metric 

of risk.4 Similar to loss rates, an individual’s risk can be decomposed into a covariate 

component, an idiosyncratic component, and the covariance between idiosyncratic losses 

and covariate losses (𝑉𝑎𝑟𝑡[𝐿𝑖,𝑑,𝑡] =  𝑉𝑎𝑟𝑡[𝐿𝑖,𝑑,𝑡 − �̅�𝑑,𝑡] + 𝑉𝑎𝑟𝑡[�̅�𝑑,𝑡] + 2 ∗ 𝑐𝑜𝑣𝑡[𝐿𝑖,𝑑,𝑡 −

�̅�𝑑,𝑡, �̅�𝑑,𝑡]). Therefore, as a household’s losses become more similar to those of their 

neighbors (𝐿𝑖,𝑑,𝑡 → �̅�𝑑,𝑡), the risk that they faces reflects covariate risk to greater and 

greater degrees (𝑉𝑎𝑟𝑡[𝐿𝑖,𝑑,𝑡] → 𝑉𝑎𝑟𝑡[�̅�𝑑,𝑡]). Alternatively, households that typically 

experience much less risk than their neighbors face idiosyncratic risk that is larger than 

their total risk.5 This points towards a potential population for whom a financial tool 

designed to indemnify covariate risk may be inappropriate because it would increase the 

variance of outcomes. 

                                                 

 

2 A division could be defined any number of ways. Defining index divisions spatially makes sense for 

products that hope to mitigate risk associated with weather-sensitive activities, such as agriculture, where 

losses are often spatially correlated.  
3 For consistency with IBLI and comparability with conventional insurance, where indemnity payments are 

based on individual losses, we assume an index that predicts loss rates. This discussion can easily be recast 

in terms of deviations from any value, such as precipitation below a benchmark or number of cooling days. 
4 Assume that variance is a suitable measurement of risk for the time being. We will extend this analysis to 

allow for asymmetric preferences by examining skewness and semi-variance after decomposing basis risk. 
5 Perhaps a more intuitive specification of the covariate risk faced by an individual is limited to that risk 

which positively co-varies with their division average and has a maximum value of the individual’s total risk. 

In this case, idiosyncratic losses are limited to those individual losses that are greater than division average 

losses, and covariate risk is calculated using only that portion of division losses that are not greater than 

individual losses. The drawback to this alternative specification is that it does not capture variance associated 

with overestimation of losses such as those falling into the false positive region, as will soon be discussed. 
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Let an insurance product be available that makes indemnity payments based on the 

values of an index generated in each division at every period (𝐼𝑛𝑑𝑒𝑥𝑑,𝑡). The difference 

between experienced losses and the index (𝐿𝑖,𝑑,𝑡 − 𝐼𝑛𝑑𝑒𝑥𝑑,𝑡) is basis error. The variance 

of basis error, often called basis risk and shown in Equation (1), is the risk that an insured 

individual faces. 

 

(1) 𝑉𝑎𝑟𝑡[𝐿𝑖,𝑑,𝑡 − 𝐼𝑛𝑑𝑒𝑥𝑑,𝑡] = 𝑉𝑎𝑟𝑡[𝐿𝑖,𝑑,𝑡] + 𝑉𝑎𝑟𝑡[𝐼𝑛𝑑𝑒𝑥𝑑,𝑡] − 2

∗ 𝐶𝑜𝑣[𝐿𝑖,𝑑,𝑡, 𝐼𝑛𝑑𝑒𝑥𝑑,𝑡] 

 

So long as the variance introduced by the index is less than twice the covariance 

between the index and losses, an individual can reduce risk by purchasing the index 

insurance.  

An index that tracks average division level losses exactly maximizes total coverage and 

minimizes basis risk but is unlikely to be achievable or at least generally not cost effective. 

Differences between the division average and the index are called design errors. The 

variance in design error, design risk (𝑉𝑎𝑟𝑡[�̅�𝑑,𝑡 − 𝐼𝑛𝑑𝑒𝑥𝑑,𝑡]), is the remaining covariate 

risk that could theoretically be captured by a (better) division level index (Elabed et al. 

2013).  

The risk that an insured individual faces can be described by the sum of idiosyncratic 

risk, design risk, and the covariance between design error and idiosyncratic error:  

 

(2)  𝑉𝑎𝑟𝑡[𝐿𝑖,𝑑,𝑡 − 𝐼𝑛𝑑𝑒𝑥𝑑,𝑡] = 𝑉𝑎𝑟𝑡[𝐿𝑖,𝑑,𝑡 − �̅�𝑑,𝑡] + 𝑉𝑎𝑟𝑡[�̅�𝑑,𝑡 − 𝐼𝑛𝑑𝑒𝑥𝑑,𝑡]

+ 2𝐶𝑜𝑣[𝐿𝑖,𝑑,𝑡 − �̅�𝑑,𝑡, �̅�𝑑,𝑡 −  𝐼𝑛𝑑𝑒𝑥𝑑,𝑡] 

 

In addition to the magnitude of basis risk, the sign and circumstances of basis error are 

also likely to be important to consumers. Figure 1 illustrates that point by displaying all of 

the possible loss-index combinations. The horizontal and vertical axis represent the range 

of time-specific individual losses (𝐿𝑖,𝑑,𝑡) and index values (𝐼𝑛𝑑𝑒𝑥𝑑,𝑡), respectively, where 

both index and losses refer to a loss rate (𝐿𝑖,𝑑,𝑡, 𝐼𝑛𝑑𝑒𝑥𝑑,𝑡  ∈ [0,1] ). The 45° line represents 
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the set of outcomes where the index and losses are identical and basis error is zero. Below 

the 45° line, losses are greater than those predicted by the index, while above the 45° line, 

the index predicts higher losses than experienced.  

Contracts typically map index values onto indemnity payments in a nonlinear fashion. 

For example, index insurance generally does not cover all losses. The strike (S in Figure 1) 

is the value that the index must exceed in order for there to be an indemnity payment, 

equivalent to a deductible in conventional indemnity insurance. Events during which high 

losses are suffered but the index remains below the strike level are termed false negatives. 

False negatives likely damage the reputation of the product because households pay a 

premium and experience losses that exceed the strike, but none of those losses are 

indemnified. Analogously, a high index that initiates a payment while the individual losses 

are less than the strike falls in the false positive region. Although false positive indemnity 

payments are a windfall for individuals, the payments are not necessarily risk reducing and 

may perversely transfer money from low to high income states through premiums to fund 

that windfall.  

The outcomes faced by an individual would describe the distribution of 

(𝐿𝑖,𝑑,𝑡, 𝐼𝑛𝑑𝑒𝑥𝑑,𝑡) realizations scattered in Figure 1. We are most interested in IBLI’s 

impacts on downside risk during catastrophic events in which losses are beyond the strike. 

In this case, downside risk is estimated as the semi-variance beyond the strike and 

downside basis risk is estimated as the semi-variance of shortfalls in indemnity payments, 

conditional on losses being greater than the strike. The Index Based Livestock Insurance 

(IBLI) product and IBLI household survey from northern Kenya provide a rare opportunity 

to examine this basis risk distribution using policy and household data, which are described 

in the next section. 

Background on Kenyan Pastoralists, IBLI and the Data  

Pastoralist households in northern Kenya depend on livestock for most of their income 

(mean percentage of income associated with livestock = 70% and median = 100% in our 

data) as well as for a wide variety of financial and social services. Frequent droughts in the 
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region play a large role in livestock mortality and household herd size. For example, in 

both 2009 and 2011, severe droughts hit the horn of Africa, causing mortality rates greater 

than 50% in some locations (Zwaagstra et el. 2010; OCHA 2011). Indeed, drought is the 

single largest cause (47%) of livestock mortality in our survey data. For pastoralist 

households, herd loss represents a direct loss of wealth and productive assets on which both 

current and future incomes depend.  

The IBLI pilot started in the Marsabit district of northern Kenya in January 2010. IBLI 

is an index insurance product based on a remotely collected indicator: the normalized 

difference vegetation index (NDVI). NDVI is an indicator of the level of photosynthetic 

activity in observed vegetation and, being a good proxy of the available rangeland forage 

for animals, should be highly correlated with livestock mortality.6 The IBLI contract was 

designed by regressing historic livestock mortality rates on transformations of lagged 

NDVI data to estimate a seasonal livestock mortality rate response to preceding NDVI 

observations (Chantarat et al. 2013).7 The regression approach is appealing because 

minimizing the residual sum of squared errors is equivalent to minimizing the variance of 

the difference between the index and individual losses, or basis risk. In addition, the index 

was developed by relating historic regional environmental conditions to the unconditional 

regional average loss rates, irrespective of coping strategies, such as herd migration, which 

would be challenging for environmental models to address.  

Division-specific indices are calculated for each of Marsabit’s five administrative 

divisions. During the period considered here, the five divisions were grouped into two 

contract divisions, upper and lower, each with its own response function. Figure 2 displays 

the five index (administrative) divisions and how they are allocated into contract divisions. 

The IBLI strike and deductible are set at 15%.  

                                                 

 

6 Purchased feed is essentially non-existent in these populations. 
7 The IBLI contract was revised for scale-up and implemented in Marsabit as well as Isiolo and Wajir districts, 

in August 2013 (see Woodard, Shee and Mude 2014 for more information). As this article focuses on the 

years 2009 – 2012 the analysis is based on the IBLI design as specified in Chantarat et al. (2013). 
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The Marsabit region experiences a bimodal rainfall pattern, which naturally produces 

two insurance seasons per year. Twelve month contracts are sold twice a year, during the 

two months preceding each insurance contract season (January-February and August-

September), so that each twelve month contract covers two indemnity periods. The 

premium rates are fixed and identical across seasons and within contract regions. See 

Chantarat et al. (2013) for more detailed information on the IBLI product.  

Our analysis uses data from a longitudinal household survey collected annually for four 

years between 2009 and 2012. The first survey round took place three months before IBLI 

launched and subsequent rounds took place during the same October-November period 

each year thereafter. The survey was used to collect data in 16 sublocations in four of the 

five IBLI pilot divisions, selected to provide a wide variety of market access, agro-

ecological zones, ethnicity, and herd size. Within sublocations, 924 households were 

randomly selected proportional to sublocation population and within herd size strata.  

The survey collects data on a wide variety of demographic, economic, and health 

characteristics but emphasizes livestock herd dynamics.8. Because much of this analysis 

relies on the estimation of household-level estimates of livestock mortality rate, the sample 

is restricted to the 736 households that are maintained through all 4 survey rounds and that 

always own at least one livestock. See Appendix A for a discussion of attrition and the 

sample used in this study.  

During the four sales seasons between 2009 and 2012, 429 IBLI purchases are observed 

in the survey data. Of those purchasers, the mean coverage purchased was 2.6 tropical 

livestock units (TLUs).9  

Although IBLI coverage was only available for the last five of the eight insurance 

seasons captured in these data, all eight seasons are used in this analysis in order to better 

estimate the risk and basis risk distributions that households face. The first key variable of 

                                                 

 

8
 The survey codebook and data are publically available and found at 

https://livestockinsurance.wordpress.com/publications/ 
9 IBLI coverage is sold in tropical livestock units (TLU), which are calculated as follows: camels=1TLU, 

cattle=0.7 TLU, sheep and goats=0.1 TLU. 

https://livestockinsurance.wordpress.com/publications/
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interest—household-season livestock mortality rate—is estimated using annual herd size 

and recall data for month of livestock births, deaths, slaughter, sale, and purchases. Figure 

3 illustrates the distribution of within-household average and accompanying stochastic loss 

rates across the sample. The within-household average loss rates are indicated along the x-

axis and by the red dots in the top illustration. Also on the top illustration, each household’s 

dispersion of losses is mapped using vertical blue lines, which show the mean plus/minus 

one standard deviation of their losses. Note the clear trend in increasing stochastic losses 

(taller blue lines) with increased average losses (moving to the right on the x-axis). The 

bottom illustration provides a clearer picture of the distribution of observations across 

average loss rate space. The dispersion of losses and distribution of average losses indicate 

that for the majority of households, losses are generally low with an occasional high-loss 

period.  

The second core variable of interest—net mortality rate—is the simulated net outcome 

of losses, less premium payments plus indemnity payments. There are a number of relevant 

annual premium rates for IBLI policies: the subsidized rate at which policies were sold 

during the survey period, the within-sample actuarially fair premium rate, and the loaded 

and unsubsidized commercial rate calculated by the underwriter. Importantly, the 

subsidized rates are lower that the within-sample actuarially fair rate in all divisions. A 

detailed description of the livestock mortality rate estimation process, the various premium 

rates, and index values are found in Appendix B. Indemnity payments are drawn from the 

same historic data used in the actuarial calculations by the underwriters. 

In the following sections we examine the impact of IBLI coverage on risk and estimate 

a number of idiosyncratic and design risk metrics in order to provide a clear picture of 

IBLI’s performance. We focus on full insurance rather than optimal coverage because we 

are specifically interested in learning about the distribution of basis risk and factors that 

determine where a household falls in the distribution. Fully insured households provide us 

with the opportunity to examine the factors that are associated with both positive and 
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negative outcomes, be that from poor index design or high idiosyncratic risk.10 A 

convenient byproduct of fully insured herds is that net outcomes are in units of livestock 

mortality/survival rate.11  

Results 

We begin this section by comparing the outcomes without IBLI coverage and the net 

of losses, premium rates and indemnity payments associated with purchasing coverage. 

This provides a vantage point by which to better understand the magnitude and 

heterogeneity in coverage, and thus basis risk, provided by the IBLI product. It is also, to 

our knowledge, the first article to look at coverage provided by an index product in a low-

income country that draws on household level data.  

Comparing histograms of the survival rates without IBLI coverage to the net survival 

rate with IBLI coverage—calculated using commercial premium rates—reveal that IBLI 

coverage changes the distribution of outcomes dramatically (Figure 4). Most apparent is a 

significant mass with a greater than one net outcome with insurance, when (by 

construction) there are outcomes with greater than one livestock biological survival rate.12 

Observations with greater than one net survival rate reflect indemnity payments exceeding 

the sum of their losses plus the premium.  

Notice as well that a small number of observations have moved to the left of zero 

livestock survival in the insured case. A less than zero net outcome is due to situations in 

which a premium is paid and extremely high losses are experienced, but very little or no 

                                                 

 

10 Because coverage cannot be negative, an analysis of optimal coverage would only include those households 

for whom IBLI improves outcomes.  
11 At full insurance all calculations can be performed as a ratio of the full herd. The net survival rate on an 

insured herd is estimated by subtracting seasonal loss rate and premium rates, which are a percentage of herd 

value, from one, and adding indemnity rates when indemnity payments are made. IBLI places a value of 

15,000 KSH for each TLU and premium rates are set at a percentage of that value according to index division 

(Figure 2). 
12 That is not to say that there are not observations of net seasonal growth to herd size. Herd size increased 

between seasons in about 32% of the observations. Here, we are examining only the insured risk, which is 

livestock mortality, not changes to herd size. 
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indemnity payment is made.13 Thus, at the population level, there is a small but real chance 

that an insured household may face a net outcome of less than zero.  

 

Stochastic Dominance--Testing for stochastic dominance is one approach for ordering 

risky choices in a manner consistent with expected utility theory. The main advantage of 

the stochastic dominance approach is that is allows for ordering with few assumptions 

about the utility function. Unfortunately, with only eight seasonal observations per 

household, the data do not allow for powerful tests of stochastic dominance at the 

household level. Rather, we test for stochastic dominance at the population level.  

Let f(x) describe the distribution of observed livestock survival rates and g(x) describe 

the distribution of net outcome of fully insuring (i.e., net of premium and indemnity 

payments). If the insured survival rate distribution first order stochastically dominates 

(FSD) the uninsured distribution, 𝐹(𝑥) ≡ ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
 ≫  𝐺(𝑥) ≡ ∫ 𝑔(𝑥)𝑑𝑥

𝑥

−∞
, then 

insurance dominates remaining uninsured under the very mild assumption of local 

nonstationarity. Figure 5 shows that the insured distribution does not FSD the uninsured 

state. In particular, as shown in the right panel of Figure 5, which focuses on just the left 

tail of the distribution depicted in the left panel, no insurance dominates insurance when 

households experience extremely high losses and do not receive indemnity payments 

greater than the premium. Indeed, the insured distribution necessarily fails to stochastically 

dominate the uninsured case at any degree of stochastic dominance because of the positive 

probability of negative net survival rates under insurance due to catastrophic losses with 

little or no indemnity payment. 

 

Distribution Metrics—The mean-variance method for analyzing choices under risk is 

common in the insurance literature. For example, Miranda (1991) defines the change to 

                                                 

 

13 In 16 of the 5,888 observations, households experienced less than zero net livestock survival rate due to 

premium rates being added to an already high livestock mortality rates. The minimum net outcome is -2.12% 

of the original herd value. 
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yield risk due to insurance as the variance in yield without insurance less the variance of 

the net yield, which includes premiums and indemnity payments. This approach is intuitive 

and requires the estimation of very few parameters, allowing for more powerful household 

level analysis than does testing for stochastic dominance, and is consistent with expected 

utility as long as mean and variance are sufficient for describing differences in outcomes 

(Meyer 1987). But insurance may lead to changes beyond those that are captured by mean 

and variance, so that mean—variance analysis is inconsistent with important classes of 

preferences. For example, risk averse individuals may distinguish asymmetrically between 

deviations from the mean due to extremely good outcomes and extremely poor outcomes 

(Alderfer and Bierman 1970). Agricultural insurance products specifically target those 

negative outcome events rather than all variation (Turvey 1992). Higher moments (beyond 

mean and variance) can be calculated to examine changes to distributions that are not 

symmetrical while semi-variance analysis examines changes to downside risk.  

To examine the impact of insurance on mean, variance, and skewness, we first estimate 

the eight-season, within-household statistics, and then estimate the weighted average of 

each statistic across the sample.  

Loaded and unsubsidized insurance are unlikely to be mean preserving or improving, 

since it is priced above the actuarially fair level. Comparing the expected net outcome of 

being insured with the uninsured case shows that the loading indeed results in a net 

decrease in survival rates by about 1.1% (t-stat=18.66, Table 1). 

But the primary motivation for purchasing insurance is presumably not to increase 

expected outcomes but to reduce the risk of extremely poor outcomes. In this case, the 

average variance with insurance is slightly greater (2.3%, t-stat=1.89, Table 1) than 

without. This is not surprising as the domain of potential outcomes has increased for 

insured households and we expect over-indemnification to also contribute to outcome 

variance. The histograms of outcomes (Figure 4) suggest that IBLI impacts the downside 

risk that households face via indemnity payments that shift outcomes to the right. Analysis 

of skewness supports that hypothesis. Distributions are negatively skewed in both the 

uninsured and insured cases, but insurance significantly reduces the skewness magnitude, 
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by 37.6% (t-stat=16.01, Table 1). The skewness values indicate that the impact of IBLI is 

not a symmetric contraction of the variance. Rather, IBLI reduces the likelihood of large 

shocks at a small cost to expected outcomes, as is to be expected from a loaded insurance 

product. 

The welfare impacts of an increase to variance is not clear in this case, as it is the result 

of both under- and over-indemnification of losses. Downside risk, or the risk a household 

faces associated with losses beyond the strike, is unencumbered by such ambiguity and can 

be estimated as the semi-variance beyond the strike (Turvey 1992). Downside risk is 

calculated by 
1

𝑇−1
∑ (𝑂𝑖𝑡 − �̇�𝑡)𝑛𝐼(𝑍𝑖𝑡)𝑇

𝑡=1 ) where 𝑂𝑖𝑡 is the outcome experienced by 

individual i in time period t, 𝑇 = 1,2, … ,8, �̇�𝑡 is the target, 𝑛 is the weight given to 

deviations from the target, and 𝐼(𝑍𝑖𝑡) is an indicator function that is equal to one if a 

condition is met and equal to zero otherwise.  

In this case, the outcome under examination is livestock mortality rate and the indicator 

function is used to identify severe events, defined as those seasons in which the household 

experienced at least 15% livestock mortality.14 The target is used to reference the 

magnitude of the shock, which we set to the strike in order to capture the risk beyond the 

strike, associated with those extreme losses. Therefore, the set of metrics are the average 

sum of the distance between outcome and strike with distance weighted by 𝑛. Because the 

distance measure is not in relation to the mean, as it is with variance, the addition of a 

constant premium rate affects this measure of downside risk. This is important as risk 

coverage is often discussed quite separately from premium levels. To explore the effects 

of premium levels on downside risk we include estimates of downside risk for the 

subsidized, within-sample actuarially fair, and commercial, unsubsidized rates. 

Setting 𝑛 = 1 provides an estimate of the expected losses beyond the strike. The 

expectation of the outcome will rest on the level of loading or subsidy applied to the 

                                                 

 

14 The equation used to estimate downside risk includes a degree of freedom correction (T-1) because it is a 

transformation of variance, which can be consistently estimated by setting �̇�𝑡 to the mean of 𝑂𝑖𝑡, n to 2, and 

the indicator function to one. 
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premium and the timing of the indemnity payments. If indemnity payments are perfectly 

made during high loss events, households with insurance could experience an improvement 

to expected conditional losses even at the commercially loaded premium rate. Conversely, 

if the product is not making payments during the high loss events we could see an increases 

in expected net losses even at subsidized rates. The estimates indicate the index is 

performing somewhere between those two boundary outcomes, triggering indemnity 

payments during seasons with high losses enough of the time to statistically significantly 

improve expected outcomes at the subsidized and actuarially fair premium rates, but not 

enough to overcome the additional 40% loading of the commercial rates (Row 1, Table 2). 

Semi-variance around the target is estimated by setting 𝑛 = 2. As with the conditional 

expected losses, the estimates indicate that the benefits associated with reductions to semi-

variance during severe events are very sensitive to the premium levels (Row 2, Table 2). 

At the commercially loaded rate, the average household’s semi-variance remains about the 

same with or without IBLI, but at the actuarially fair rate or subsidized rate households are, 

on average, better off with IBLI coverage. It worth noting that perfect loss-indemnifying 

insurance above 15% would drive both the expected losses above 15% and the semi-

variance above the strike to zero. But, perfect index insurance would not cover all losses 

above the strike unless all individuals within the covariate region suffer from identical 

losses at all times. For example, 49.2% of the non-zero observations used in Table 2 

(experiencing livestock mortality rate>0.15) occurred during periods when covariate losses 

were below 0.15, and thus fall outside the parameters of the IBLI contract. We examine 

the index design and idiosyncratic contributions towards this remaining basis risk, 

represented by the semi-variance here, in Section 4.  

On average, IBLI sold at the commercially loaded premium rate significantly reduces 

expected survival rate net of premium payments but also adjusts the distribution to one 

more favorable to the household as indicated by a significant reduction in skewness. 

Restricting the analysis to those periods when households experience greater that 15% 

livestock mortality reveals that the benefits of IBLI coverage on downside risk are highly 

sensitive to the premium rates and are positive at the actuarially fair rates. Yet, the impact 
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of IBLI is likely to be heterogeneous across loss rates, premium levels, and households, so 

that while many households may benefit from IBLI, many others may not. For example, 

IBLI coverages reduces variance for 42.3% of the sample, skewness for 81.5%, and 

downside risk is improved for 41.9% and 62.4% of the sample at the unsubsidized and 

subsidized rates, respectively (Table 3). At any of the relevant either premium levels, many 

households experience benefits as measured by one metric and net costs by another. Only 

a utility framework could fully order outcomes, but we hesitate to introduce an additional 

set of (questionable) model assumptions about households’ preferences. 

This section examined the impact that IBLI coverage has on the distribution of 

household outcomes. There is a great deal of heterogeneity between household outcomes 

and across metrics. It is clear that the benefits of IBLI are far from universal in magnitude 

or even sign. Put differently, product value varies remarkably within the sample and as a 

function of the premium rate charged for the product. The next section examines basis risk 

at the household level to determine which factors contribute it and thus to the benefits, if 

any, of IBLI. 

 Decomposing Basis Risk 

Although IBLI reduces risk for many households, there are clear signs that policy 

holders continue to shoulder significant basis risk. This section examines household-level 

basis risk to determine which contract and household level characteristics are associated 

with greater basis risk. In order to focus on index design shortfalls we make two changes 

to our procedure. First, outcomes and net outcome are now measured in terms of livestock 

mortality and net mortality rates rather than survival rates, as in the previous section. 

Survival rates can be recovered by subtracting the mortality rate outcome from one. 

Second, we do not include a premium in this analysis so that our estimates are an 

examination of the relationship between the index and household data rather than the 

policy’s premium rates.  

Table 4 summarizes the downside risk without insurance and the downside basis risk 

associated with index shortfalls during high loss events. Downside risk is estimated as the 
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semi-variance of livestock mortality rate beyond the strike and downside basis risk is 

estimated as the semi-variance of the difference between livestock mortality rates and the 

indemnity rate, conditional on the household experiencing high livestock mortality rates 

(>0.15) and a shortfall in indemnity rates. This focuses the analysis on those periods when 

households suffer severe losses and on IBLI’s performance in reducing risk caused by such 

losses. The overall average reduction to squared deviations from the strike during high loss 

events due to IBLI coverage is about 28.4%. 

 

Design Risk—Design risk arises due to differences between the index and the covariate 

losses. The level of design risk is necessarily shared among all policy holders in the same 

index division (administrative districts in this case). Figure 2 shows a map of the Marsabit 

region and the five index divisions; a different index value is calculated for each.  

Figure 6 plots the 32 index-covariate loss observations on the domain described by 

Figure 1. Fitted lines above and below the strike are also included, along with confidence 

intervals. There is clearly large variation across the sample in how well the index performs. 

Below the mortality rate equivalent of the strike (to the left of the vertical red line), most 

of the fitted line lies above the 45 degree line, reflecting frequent over predictions by the 

index when division level mortality rates were actually quite low. Above the mortality rate 

equivalent of the strike (to the right of the vertical red line), the index generally understates 

covariate losses. In total, there are eight (25%) observed false positives and four (12.5%) 

false negatives. The high rate of discrete error observed on an index designed explicitly to 

minimize basis risk and tested out-of-sample using a data set other than the design data 

(Chantarat et al. 2013) serves as a strong caution against overconfidence in the quality of 

index insurance products.  

To examine the accuracy of the index we focus on those events when covariate losses 

were greater than the strike (to the right of the horizontal red line in Figure 6). Table 5 

provides summary statistics of the covariate and design risk associated with those events. 

The covariate risk associated with severe events represents only 17% of the average 

downside risk estimated in Table 4, foreshadowing the large role that idiosyncratic risk 
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plays.15 Design risk is then calculated as the semi-variance of the shortfall of the index 

during those covariate events. Notice that the average conditional design risk represents 

less than 10% of the average conditional basis risk presented in Table 4. The precision is 

an estimate of the portion of downside covariate risk that the index successfully covers. On 

average, the index reduces downside covariate risk by about 63.2% but there is significant 

heterogeneity in covariate risk and index precision between divisions. 

Regressing the index onto covariate losses shows that there are systematic differences 

between the index and covariate losses (Table 6). The point estimate for covariate losses—

0.377—from the unconditional regression (Table 6, column 1) reflects that the index 

generally underpredicts losses when covariate losses are low and overpredicts losses when 

they are high. Coincidentally, the switch from over to under prediction to over prediction 

takes place when covariate losses are equal to 0.212, near the strike of 0.15. Testing the 

coefficients against the null hypothesis of a perfect index product (𝛼𝑑 = 0 𝑎𝑛𝑑 𝛿𝑑 = 1), 

reveals an imperfect structural relationship between the index and covariate losses that 

could be reduced by shifting and rotating the index. 

As a check for performance during only the large covariate shocks that IBLI is intended 

to mitigate, the regression is restricted to season-district observations during which 

covariate losses are above the strike. There are only fourteen such observations, so the 

estimation results should be interpreted carefully. During these large covariate shocks, 

there continues to be evidence of structural differences between the index and covariate 

losses (F-stat=7.64). But those structural differences could be mostly addressed by 

adjusting the index upwards, while the slope of the index is statistically indistinguishable 

from the ideal—one (F-stat=1.52).  

In addition to adjusting the index, a second potential approach to reducing design risk 

is to adjust the strike. Calculating design error conditional on covariate losses greater than 

                                                 

 

15 Notice that IBLI coverage is reducing exposure to risk from extreme events at an average rate (28.4%) that 

is greater than the average share of risk that is associated with large covariate shocks (17%). That is because 

the IBLI index predicts catastrophic losses in a number of periods during which covariate losses are below 

the strike (15%) but when there is a subsample with high losses.  
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the strike and allowing the strike to vary across the interval [0,0.25], we examine how well 

the index predicts covariate losses above the strike at various strike levels. We find that 

varying the strike rate has no significant impact on the accuracy of the index; there is a 

great deal of variation in design error at all strike levels (Figure 7). 

Design errors are a significant component of basis risk. These design errors arise due 

to covariate losses that could be indemnified by the IBLI policy but are not captured by the 

index as presently designed even though it was explicitly designed to minimize basis risk. 

Our estimates of the relationship between the index and covariate losses point towards a 

systematic error that could be addressed by shifting and rotating the index to increase 

predicted livestock mortality rate during poor seasons. The strike level is a second 

parameter that could be readily and easily changed if there were gains in precision to be 

had. But as there is no evidence to support the superiority of one strike level over another, 

the strike level might be left open as a contract parameter chosen according to consumer 

or provider preferences. 

 

Idiosyncratic Risk—A second and far larger portion of downside basis risk arises due 

to idiosyncratic losses, or mortality not reflected in the division average, or covariate, 

losses. Although much idiosyncratic loss is likely associated with random events, they may 

also have a systematic relationship with household or geographic characteristics. If such 

patterns are known to prospective purchasers, a form of adverse selection subtly returns 

even though index insurance is pitched in part as an approach to obviate adverse selection 

problems in conventional insurance. This sort of adverse selection does not necessarily 

affect equilibrium pricing or profits of the insurance. But if insurers pool actuarial estimates 

across seasons and/or contract regions, as was the case with IBLI during this period, 

consumers face (inadvertent) heterogeneity in premium subsidies/loadings and the 
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resulting patterns or demand do pose a threat to insurer profits.16 We now examine factors 

associated with idiosyncratic risk.  

The size of the covariate region may affect the level of covariate (and thus remaining 

idiosyncratic) risk. In theory, index products capture a greater portion of risk as the size of 

the index region shrinks. The entire IBLI study region covers about 66,700 km2 (about the 

size of West Virginia) and is composed of five divisions. Each division consists of 

sublocations (administrative subunits within divisions), 16 of which are captured by the 

survey.  

Figure 8 shows the ratio of covariate risk to average total risk at various geographic 

scales of aggregation.17 This ratio captures the risk faced by households that could be 

covered by an index product at each covariate scale in this setting. The average ratio of 

covariate to total risk nearly triples as the covariate area shrinks from a large aggregate 

region composed of a single IBLI division, to 16 separate divisions defined by sublocation. 

There is also a great deal of variance between sublocations. Covariate risk within 

sublocations is less than 15% of total risk in four survey sublocations, while it is greater 

than 50% in three. In those locations with very low covariate risk, even a local and 

extremely accurate (i.e., zero design risk) index product could not cover much of the risk 

that households face. On the other hand, households in other many survey sublocations 

face a great deal of covariate risk, making them prime candidates for index insurance.18  

There is also variation among households and even within households over time. In 

this final analysis of basis risk patterns, we explore which factors are associated with 

                                                 

 

16 Pooling index regions into a single premium region introduces cross-subsidies between index regions. The 

same is true if premiums are not adjusted to account for seasonal-specific risks. See Jensen, Mude and Barrett 

(2016) for more discussion on adverse selection associated with index products.  
17 The numerator, covariate risk, is the variance of covariate losses within each covariate region (𝐶𝑅𝑑 =

𝑉𝑎𝑟𝑡[
1

𝑁𝑑
∑ 𝐿𝑖𝑑𝑡𝑖 ]). The denominator is the within region average household variance in losses or average risk 

(𝑅𝑖𝑠𝑘̅̅ ̅̅ ̅̅
𝑑 =

1

𝑁𝑑
∑ 𝑉𝑎𝑟𝑡[𝐿𝑖𝑑𝑡]𝑖 ).  

18 It is possible that the differences in average covariate risk share are related to variation in the shapes and 

sizes of the sublocations. But regressing the sublocation average ratio of covariate risk to risk on sublocation 

area and the ratio of area to perimeter yields no statistical evidence of such a relationship. Results of that 

analysis are available upon request. 
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deviations of households from the average losses experienced within their index division. 

A number of easily observed characteristics could reasonably impact livestock loss rates. 

For example, Lybbert et al. (2004), studying a very similar system in neighboring southern 

Ethiopia, find a strong positive association between herd size and livestock mortality rate, 

which would translate into a similar relationship with respect to idiosyncratic losses. 

Access to labor, herd size and composition, cash liquidity, informal insurance network 

participation and level of risk aversion all might impact how well a household’s herd fares 

compared to the household’s division’s average losses. A description of the household 

characteristics considered here and their summary statistics are found in Appendix C. 

Idiosyncratic losses and the semi-variance of idiosyncratic losses beyond the strike are 

regressed on household characteristics in order to determine which are associated with 

idiosyncratic risk. Semi-variance is used rather than variance in order to isolate variance 

associated with household losses that are high and greater than covariate losses.  

Spatial correlation of idiosyncratic risk is clearly large (Figure 8) and could arise due 

to local environmental shocks or spatially correlated household characteristics. Although 

we cannot fully disentangle the two here, we can examine household characteristics for 

explanatory value with and without sublocation fixed effects, in order to reveal when 

factors are important due to between-sublocation variation and within-sublocation 

variation. Sublocation fixed effects alone are able to account for a fairly large portion of 

variation in downside idiosyncratic risk between households (R2=0.125, column 4, Table 

7) but very little of the variation in idiosyncratic losses (R2=0.026, column 1, Table 7). 

Indeed, household characteristics do no better in explaining idiosyncratic losses or 

downside risk than do sub-location fixed effects as revealed by comparing columns 1 with 

2, and 4 with 5 in Table 7. Including both controls for sublocation fixed effects and 

household characteristics provides the best fit, the R2 is nearly the sum of those from the 

considering location and household characteristics separately indicating that the two 

processes are fairly distinct (columns 1 and 2 vs. 3, and columns 4 and 5 vs. 6).  

The ratio of income generated from livestock is the only livestock-related characteristic 

that is consistently (negatively) associated with idiosyncratic risk, even when we control 
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for sublocation fixed effects. There does seem to be a weak relationship between herd size 

and exposure to idiosyncratic risk, the average marginal effect of herd size is negative and 

statistically significant in the analysis presented in Table 7 columns 3 and 6, and the third 

order polynomial coefficients estimates are jointly statistically significant Table 7 (analysis 

not included). Households with relatively more dependents also have greater idiosyncratic 

risk. 

What is perhaps the most striking finding of this analysis is how little idiosyncratic risk 

is associated with household characteristics or can be captured by sublocation fixed effects. 

Idiosyncratic losses cannot be very well explained by sublocation average losses nor by a 

host of household characteristics that could reasonably be associated with livestock 

mortality rates. Idiosyncratic losses seem to be almost entirely random while variance in 

losses is much more predictable, but still more than 75% of the variation in semi-variance 

is unexplained by readily observable household characteristics and sub-location fixed 

effects, as might be practical for targeting purposes. 

As a robustness check, we estimate a fixed effects model to determine if unobserved 

time-invariant household characteristics drive our findings. Only column (2) from Table 7 

can be estimated in this way because the within-household variation in sublocation is nearly 

zero and semi-variance of idiosyncratic losses has no within household variance. In 

addition, risk aversion, age, and gender variables are dropped due to lack of within 

household variation. The fixed effects model reported in Appendix D also captures very 

little of the rate of idiosyncratic losses and there is little indication that those losses are 

anything but random.  

In summary, households that depend on livestock for only a small amount of their 

income but have relatively large herds and have many dependents will likely suffer from 

greater idiosyncratic losses even after accounting for community fixed effects. The 

sublocation effects seem to be mostly in addition to household characteristics indicating 

that they capture factors associated with local environmental conditions. While there is 

some geographic targeting capacity when the index regions are made sufficiently small in 
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size, none of these observable variables explain much idiosyncratic loss, which is both 

large in magnitude and mainly random.  

Discussion 

Index insurance provides a promising means for overcoming many of the barriers that 

have impeded insurance delivery in poor rural regions of the world. But index insurance 

has its own weaknesses, chief among which is basis risk. As a result, index insurance may 

only prove appropriate in certain risk environments and at certain covariate scales. 

Knowing both the idiosyncratic and design components of basis risk is important in 

determining the value proposition of index insurance. Regrettably, in practice neither the 

consumer nor the provider has perfect information so index insurance product quality 

remains largely unexplored. Providers can only learn about the relative magnitude of 

covariate risk and the accuracy of their index by collecting longitudinal consumer-level 

information to determine covariate risk, a rare practice. In a similar fashion, consumers can 

only begin to estimate the design risk once they have observed a number of periods of 

product coverage.  

The result is that although basis risk is widely recognized as the Achilles heel of index 

insurance, it has to date gone unmeasured and unstudied in index insurance products 

developed for smallholder farmers and herders in the low-income world. This study 

provides the first detailed study of basis risk related to index insurance products in 

developing countries. It examines an insurance contract that is best-in-class in at least two 

important ways. First, there is a great deal of evidence that large covariate droughts are the 

largest cause of livestock mortality in the population for whom IBLI is available (e.g., 

Lybbert et al. 2004; Barrett et al. 2006; Santos and Barrett 2006; McPeak, Little, and Doss 

2012). Second, IBLI polices are based on an index that was generated using a long panel 

of household data and regression methods expressly to minimize basis risk (Chantarat et 

al. 2013). Other index products fielded in the developing world typically lack similar 

foundations. These features should make this product something close to a best case 
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scenario for assessing basis risk in index insurance products for farmers and herders in the 

developing world.  

Given the burgeoning interest in index insurance within the development, finance, and 

agricultural communities, and the glaring dearth of evidence on basis risk and therefore 

product quality, our findings offer a cautionary tale to researchers and practitioners alike. 

They illustrate the complexity of providing index insurance, even in an environment that 

in some respects seems ideal. Our results highlight the spatial sensitivity of covariate risk 

to the covariate region and the resulting prospect for spatial adverse selection in demand 

patterns. We find that basis risk, especially idiosyncratic risk, is substantial, pointing 

towards the continued importance of informal risk sharing agreements and other 

complementary risk management mechanisms even when index insurance is available. An 

optimally designed index insurance product yields risk-reduction for many prospective 

purchasers but offers far-from-full coverage. Caution seems warranted in the wholesale 

promotion of index insurance as a risk management instrument for low-income populations 

underserved by conventional insurance markets.  
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Figure 1. The Domain of Basis Error 
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Figure 2. IBLI Geographical Coverage and Index Divisions 
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Figure 3. Distribution of Within-Household Average and Stochastic Losses 
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Figure 4. Histograms of Livestock Survival Rate and Net Survival Rate with Full 

Insurance 

 

Notes: Net livestock survival rate with full insurance equals the household’s seasonal survival rate less the 

commercial premium (loaded and unsubsidized) plus indemnity payments. Tally of observations to the left 

of zero, between zero and one, and to the right of one are in green. 
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Figure 5. Cumulative Distribution of Livestock Survival Rate and Net Outcome:  

Full Cumulative Distributions (Left) and Left Tail of the Cumulative Distributions (Right) 

 

Notes: Insured livestock survival rate equals the household’s seasonal survival rate less the commercial 

premium (loaded and unsubsidized) plus indemnity payments.   
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Figure 6. Design Error Above and Below the Strike (0.15) 

 

Notes: Covariate loss-index observations are seasonal division average mortality paired with the index value 

for that division-season. Fitted lines and confidence intervals are generated by regressing livestock mortality 

rates on the index.  
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Figure 7. Index Accuracy at Across Covariate Loss Strike Levels 
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 Entire Sample Division Sub-Location 

Risk (R) x 100 4.41 4.86 5.29 

Covariate Risk (CR) x 100 0.54 1.12 1.87 

Ratio (CR/R) 0.12 0.21 0.34 

 

Figure 8. Ratio of Covariate Risk to Individual Risk at Different Geographic Scales 
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Table 1. The Average Within-Household Mean, Variance, and Skewness of Survival Rate 

With and Without IBLI Coverage 

 

Statistic Uninsured Insured Difference Standard Error t-statistic 

Mean x 100 85.0 84.0 0.929 0.050 18.66*** 

Variance x 100 5.08 5.19 -0.117 0.062 -1.89* 

Skewness -1.18 -0.735 -0.444 0.028 -16.01*** 

 

Notes: Analysis uses the commercial premium rate. 
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Table 2. Downside Risk during Severe Events (Mortality Rate > 0.15) With and Without 

IBLI Coverage 

Statistic Premium1 Uninsured2 Insured2 Difference2 t-statistic 

Expected 

Losses > 0.15 

Commercial 9.49 9.70 -0.21 -3.25*** 

Actuarially Fair 9.49 9.32 0.17 3.16*** 

 Subsidized 9.49 8.54 0.96 17.37*** 

      

Semi-Variance Commercial 4.33 4.38 -0.042 -0.82 

Actuarially Fair 4.33 4.16 0.17 3.86*** 

 Subsidized 4.33 3.73 0.60 12.52*** 

 

Notes: 1The weighted average annual premium rates are as follows: commercial=10.8%, actuarially 

fair=8.6%, subsidized=3.8. 2 Values are multiplied by 100. 
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Table 3. Proportion of Households for Whom IBLI Improves Their Position with Respect 

to Each Statistic 

Statistic Proportion 

 Loaded & 

Unsubsidized 

Actuarially Fair Subsidized 

Mean 0.266 0.456 1.000 

Variance 0.423 0.423 0.423 

Skewness 0.815 0.815 0.815 

Semi-Variance 0.419 0.479 0.624 
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Table 4. Average Downside Risk without Insurance and Remaining Downside Basis Risk 

with Insurance in Periods with High Losses 

 Central Laisamis Loiyangalani Maikona Overall 

Conditional Losses1 0.505 0.427 0.3890 0.381 0.412 

Conditional Index1 0.204 0.165 0.126 0.156 0.151 

      

Downside Risk (X100)2 6.000 4.661 4.364 2.962 4.329 

Downside Basis Risk(X100)2 4.337 3.529 3.904 2.032 3.426 

Coverage3 0.363 0.319 0.176 0.375 0.284 

      

Observations 157 109 247 223 736 

 

Notes: The statistics in the table are the average of household-level estimates. 1 Conditional losses and index 

values are the average index and livestock mortality rates from the pool of household observations with 

greater than 15% livestock mortality rate. 2 Conditional (downside) risk is estimated using semi-variance of 

losses beyond the strike, conditional on covariate losses being greater than the strike. Conditional basis risk 

is calculated as the semi-variance of index shortfalls, conditional on covariate losses being greater than the 

strike. 3 Coverage is the average of household-level estimates (not the ratio of averages) of reduction in 

downside risk due to insurance coverage. 
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Table 5. Covariate and Design Risk in Seasons when Covariate Losses Were Above the 

Strike 

 Central Laisamis Loiyangalani Maikona Overall 

Conditional Covariate Losses1 0.392 0.228 0.207 0.255 0.262 

Conditional Index1 0.255 0.170 0.120 0.165 0.176 

      

Downside Covariate Risk(X100)2 1.686 0.771 0.091 0.318 0.717 

Downside Design Risk(X100)2 0.565 0.163 0.051 0.116 0.224 

Precision3 
0.665 0.788 0.439 0.636 0.632 

      

Seasons w/ mean loss>0.15 2 4 2 2 10 

 

Notes. The statistics in the table are the average of division-level estimates. 1 Division average rates for 

seasons during which the covariate losses are greater than 0.15. 2 Downside covariate risk is estimated as the 

semi-variance of covariate losses, conditional on covariate losses being above the strike. Downside design 

risk is estimated as the semi-variance of the positive difference between covariate losses and the index, 

conditional on covariate losses being above the strike. 3 Precision is the average ratio (not the ratio of the 

averages) of conditional covariate risk captured by the index. 
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Table 6. The Relationship between Covariate Losses and the IBLI Index 

 Index Index (Conditional on CL>0.15) 

Covariate Losses 0.377** 0.694** 

 (0.180) (0.248) 

Constant 0.080** -0.012 

 (0.033) (0.065) 

   

F-stat: H0: αd = 0 and δd = 1 6.21** 7.64** 

F-stat: H0: δd = 1 11.99*** 1.52 

   

Observations 32 14 

R-squared 0.127 0.394 

 

Notes.1 Conditional covariate losses are covariate losses during season’s when covariate losses were greater 

than the strike (0.15). Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 7. Factors that Contribute to Idiosyncratic Risk 

  Idiosyncratic Loss Rate (IL) Semi-Variance(IL)* 

VARIABLES (1) (2) (3) (4) (5) (6) 

Male  -0.0182** -0.0075  -0.0062 -0.0038 

  (0.0086) (0.0086)  (0.0043) (0.0040) 

Dependency ratio  0.0658** 0.0493**  0.0457*** 0.0360** 

  (0.0258) (0.0246)  (0.0141) (0.0140) 

Asset index#  -0.0209 -0.0750  0.0391 0.0420 

  (0.0743) (0.0899)  (0.0521) (0.0625) 

Asset index squared#  -0.0114 0.2231  -0.2532 -0.2574 

  (0.3345) (0.3660)  (0.1819) (0.2025) 

HSNP participant  0.0047 -0.0064  -0.0039 -0.0089* 

  (0.0089) (0.0098)  (0.0046) (0.0054) 

Ratio herd camels  -0.0036 0.0089  -0.0039 0.0160 

  (0.0227) (0.0244)  (0.0178) (0.0202) 

Ratio herd cattle  -0.0050 0.0036  0.0025 0.0095 

  (0.0186) (0.0180)  (0.0207) (0.0259) 

Herd size (TLU/100)  0.0192 -0.1161*  -0.0258 -0.1356** 

  (0.0534) (0.0627)  (0.0559) (0.0600) 

Herd size2 (TLU2/1002)  -0.0335 0.0777  0.0873 0.2583** 

  (0.0664) (0.0743)  (0.1076) (0.1089) 

Herd size3 (TLU3/1003)  0.0032 -0.0212  -0.0428 -0.1169** 

  (0.0170) (0.0193)  (0.0505) (0.0497) 

Ratio income from livestock#  -0.0234** -0.0223*  -0.0374*** -0.0278* 

  (0.0111) (0.0127)  (0.0102) (0.0151) 

Log (1+Savings)#  0.0010 0.0016  -0.0016** -0.0012 

  (0.0014) (0.0016)  (0.0007) (0.0011) 

Social groups (count)#  -0.0046 -0.0035  -0.0055 -0.0042 

  (0.0059) (0.0064)  (0.0034) (0.0037) 

Moderately risk averse   -0.0110 -0.0071  -0.0024 -0.0001 

  (0.0086) (0.0070)  (0.0050) (0.0041) 

Extremely risk averse  -0.0048 -0.0076  0.0015 -0.0006 

  (0.0095) (0.0079)  (0.0050) (0.0044) 

       

Sublocation Fixed Effects  Yes No Yes Yes No Yes 

F-stat: Sublocation FE=0  6.74***  3.86*** 4.39***  3.80*** 

Observations 5,888 5,120 5,120 736 736 736 

R-squared 0.026 0.012 0.032 0.125 0.117 0.208 

 

Notes: Regressions include age and age squared of household head, household size, and an intercept term. 
*Semi-variance of idiosyncratic losses regressed onto the eight-season mean of household covariates. 
#Variable is lagged by one period in the idiosyncratic losses estimation. Household clustered-robust standard 

errors in parentheses. ***p<0.01, **p<0.05, *p<0.1 
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Appendix A: Attrition and Selection Analysis 

The level of sample attrition is less than 4% per year; 37 households between first and 

second rounds, 30 between second and third rounds, and 25 between third and fourth 

rounds. There are statistically significant differences between the survey households that 

exit and those that remain in the survey (Table A.1). Households that leave the survey are 

larger, consume less per person, and generate a greater portion of income from livestock 

related activities. About 12% of the remaining households are dropped because they have 

periods with zero reported livestock so that their livestock mortality rate is undefined. The 

dropped households are similar to the exit households but also have significantly lower 

education, greater herd size and income than the control households.  

 

Table A.1. Balancing Table (2009: Unbalanced vs. Balanced Panel) 

Variable 

Maintained 1 

(N=736) 

Exit, or 

Dropped Difference T-statistic 

Exit households (N=922) 

Max education3 4.31 4.74 -0.43 -0.88  

Household members (count) 5.76 4.89 0.87 3.38 *** 

Dependency ratio4 0.62 0.59 0.02 0.96  

Consumption per capita (KShs) 1,377 1,736 -360 -2.76 *** 

TLU owned5 19.71 16.14 3.57 1.28  

Income (KShs) 5,259 3,504 1,755 1.01  

Ratio of income form livestock 0.56 0.30 0.26 3.54 *** 

Risk category6 2.49 2.65 -0.16 -0.84  

Savings (KShs) 6,893 13,795 -6,901 -0.98  

Households with zero livestock holdings in at least one period (N=96) 

Max education3 4.31 5.28 -0.98 -2.03 ** 

Household members (Count) 5.76 4.79 0.97 3.87 *** 

Dependency Ratio4 0.62 0.62 -0.01 -0.23  

Consumption per capita (KShs) 1,377 1,989 -612 -4.68 *** 

TLU owned5 19.71 4.30 15.41 5.78 *** 

Income (KShs) 5,259 5,258 1.29 0.00  

Ratio of income form livestock 0.56 0.08 0.48 9.33 *** 

Risk category6 2.49 2.73 -0.23 -1.28  

Savings (KShs) 6,893 5,217 1,676 0.26  
Notes: 1 Households that are in all four survey rounds and never have zero livestock for an entire IBLI 

season (March-September or October-February). 2 N=92 is composed of 88 households that left the survey 

and were replaced, and 4 that miss one survey round but did not leave the survey. 3 Maximum level of 

education achieved by any household member where 1-8 are standards, 9-12 are forms 1-4, 15 is a diploma, 

16 a degree and 17 a postgraduate degree. 4 Ratio of household members aged less than 15 or older than 54 

years to the total household size. 5 Tropical Livestock Units (TLU) are calculated as follows: camels=1TLU, 

cattle=0.7 TLU, sheep and goats=0.1 TLU. 6 Risk categories are discrete values ranging from 0 (most risk 

averse) to 5 (most risk taking) elicited using a real lottery with variation in expected winnings and variance 

of outcomes similar to that described by Binswanger (1980). *** (p<0.01), ** (p<0.05) and * (p<0.1). 
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Appendix B: Livestock Mortality Rate, IBLI Premium Rates and Index Values 

The ideal estimate of seasonal livestock mortality rate is the ratio of animals entering a 

season that die during the season. But the data do not allow for tracking specific animals 

through the season so we construct an alternative estimate of seasonal livestock mortality 

rate. The numerator of this alternative estimate is the sum of monthly losses (𝑀𝑖,𝑑,𝑚) for 

individual i in division d during month m for all months that fall into season s. The 

denominator is composed of the sum of the herd size at the beginning of the season 

(𝐻𝑖,𝑑,𝑠𝑡𝑎𝑟𝑡) and all monthly additions to the herd over the following season (∑ 𝐴𝑖,𝑑,𝑚𝑚∈𝑠 ).19 

Thus, seasonal livestock mortality rates (𝐿𝑖,𝑑,𝑠) are estimated by dividing the season’s 

cumulative livestock mortality by the total herd owned by each household that season 

(Equation B.1).20 

(B.1) 
𝐿𝑖,𝑑,𝑠 =

∑ 𝑀𝑖,𝑑,𝑚𝑚∈𝑠

𝐻𝑖,𝑑,𝑠𝑡𝑎𝑟𝑡 + ∑ 𝐴𝑖,𝑑,𝑚𝑚∈𝑠
 

Where: 

 
𝑠 = {

𝐿𝑅𝐿𝐷 𝑖𝑓 𝑚 = [𝑀𝑎𝑟𝑐ℎ, … , 𝑆𝑒𝑝𝑡]
𝑆𝑅𝑆𝐷 𝑖𝑓 𝑚 = [𝑂𝑐𝑡, … , 𝐹𝑒𝑏]

} 

 

Average mortality rates vary widely between the four study divisions and across 

seasons (Figure B.1). More importantly for this analysis, there is clear evidence of large 

covariate losses within divisions, as is revealed by seasons with high average mortality 

rates. IBLI can only be an effective risk mitigation tool if catastrophic losses are correlated 

between individuals. An ideal IBLI product would indemnify those (average) losses that 

are above the strike (0.15) in Figure B.1. 

 

                                                 

 

19 𝐻𝑖,𝑑,𝑠𝑡𝑎𝑟𝑡 is calculated using reported herd sizes at the time of the survey and iterating backwards, adjusting 

for monthly birth, death, purchase, sale, and slaughter. Herd size is constrained by 0 ≤ 𝐻𝑖,𝑑,𝑚 ∀ 𝑖, 𝑑, 𝑚 to 

address errors in recall that occasionally lead to erroneous negative livestock herd size estimates. 
20 We rely on estimates of livestock mortality rate because the data does not track individual livestock through 

each season. The qualitative results presented in this article are robust to using an alternative method for 

calculating livestock mortality rate, which is described and used in Chantarat et al. (2013). 
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Figure B.1. Division Level Average Livestock Mortality Rate Across Seasons 

 

Note: The index strike value is 0.15. SRSD is short rain/short dry insurance season. LRLD is the long 

rain/long dry insurance season. 

 

 

There are three important premium rates to consider for IBLI (Table B.1). The 

subsidized rates that were made available to pastoralists during the periods covered by this 

analysis offer insight into the conditions that the survey households actually faced during 

these periods. The within-sample actuarially fair premium rates provide the best estimates, 

however, if the intent is to focus on the intertemporal smoothing effect of insurance. 

Finally, the unsubsidized loaded annual premium rates calculated by the insurance 

providers in 2014, provide information on outcomes associated with commercially 

sustainable, unsubsidized premium rates. These final rates reflect a reevaluation of the 

expected indemnity payments in 2014 in response to severe conditions between 2009 and 

2013. Notice that the premium rates are no longer common in the upper and lower contract 

divisions as of 2014.  

 

Table B.1. Annual Premium Rates in Percent of Insured Value 

 Subsidized Rates1  

Within-Sample 

Actuarially Fair Rates  

Unsubsidized & Loaded 

Commercial Rates 

Central 3.325% 9.25% 10.60% 

Laisamis 3.325% 7.50% 11.30% 

Loiyangalani 3.325% 7.00% 9.20% 

Maikona 5.500% 12.25% 10.70% 

Note: 1 The subsidized rates were available to pastoralists form January 2010-January 2012. 
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This research includes analysis of basis risk before IBLI was available for sale. In those 

non-sale periods, there are no publically available index values. In the seasons before 

LRLD 2010, index values were collected from internal program documents: “IBLI Pricing 

2010” (SRSD 2008 LRLD 2009 and SRSD 2009) and “IBLI Marsabit Pricing June 2012” 

(LRLD 2010). The remainder (SRSD 2010 though LRLD 2012) were collected from the 

publically available IBLI index archive available at 

http://livestockinsurance.wordpress.com/ibli-kenya/mortality-index-update/index-

archive. The indemnity payments represent a percentage of the value of the insured asset 

and are calculated according to the IBLI contracts (max (index-0.15, 0)).  

 

Table B.2. IBLI Index Values and Imputed Indemnity Payments 

 Central  Laisamis Loiyangalani Maikona 

Seasons Index Indemnity Index Indemnity Index Indemnity Index Indemnity 

SRSD 20081 0.08 0.00 0.13 0.00 0.05 0.00 0.18 0.03 

LRLD 20091 0.25 0.10 0.27 0.13 0.26 0.11 0.00 0.00 

SRSD 20091 0.23 0.08 0.21 0.06 0.29 0.14 0.42 0.27 

LRLD 2010 0.00 0.00 0.02 0.00 0.02 0.00 0.01 0.00 

SRSD 20101 0.06 0.00 0.06 0.00 0.06 0.00 0.02 0.00 

LRLD 2011 0.26 0.11 0.22 0.07 0.18 0.03 0.33 0.18 

SRSD 2011 0.23 0.08 0.20 0.05 0.12 0.00 0.06 0.00 

LRLD 20121 0.05 0.00 0.02 0.00 0.03 0.00 0.02 0.00 
Note: 1IBLI was not sold during these seasons. 

 

http://livestockinsurance.wordpress.com/ibli-kenya/mortality-index-update/index-archive
http://livestockinsurance.wordpress.com/ibli-kenya/mortality-index-update/index-archive
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 Appendix C: Household Variables and Summary Statistics 

 

Table C.1. Household Characteristics Used to Examine Idiosyncratic Risk 

Variable Description 

Idiosyncratic Losses Seasonal difference between household loss rate and division average loss rate.  

Semi-Variance Within household sum of squares of the difference between losses and covariate losses, 

conditional on individual losses greater than covariate losses.  

Male =1 if head of household is male. 

Age Age of head of household to capture lifecycle and herding experience effects.  

Household Size Number of individuals in the household as a control for access to labor. 

Dependency Ratio The ratio of persons under 15, over 65, chronically ill, and disabled to total household 

members. 

Asset Index An index constructed by factor analysis of a large list of household construction materials 

and assets. The asset index is discussed in more detail in below. 

HSNP  A dummy variable indicating that the household is a participant in the Hunger Safety Net 

Program (HSNP), an unconditional cash transfer program. 

% Camels Ratio of herd that are camels 

% Cattle Ratio of herd that are cattle 

Herd Size  Total herd size in tropical livestock units (TLU) where Camel=1TLU, Cattle=0.7 TLU, 

Sheep or goats=0.1 TLU 

Income Total cash and in-kind income in real (February 2009) Kenya shillings adjusted for 

changes to the consumer price index found at Kenya National Bureau of Statistics. 

Ratio Income Livestock Share of income generated from livestock and their byproducts. 

Savings  Total savings in real (February 2009) Kenya shillings adjusted for changes to the consumer 

price index found at Kenya National Bureau of Statistics. Log(1+savings) is used in the 

regressions. 

Social Groups A count of the number of the following groups that the household participates in: self-help 

group, women’s group, youth group, group related to a water point, group related to 

pasture, group related to livestock business, merry-go-round savings and lending group, 

and other.  

Risk Aversion Risk aversion is elicited by offering a one-time lottery similar to the process described in 

Binswanger (1980). Each household choose one lottery, a coin was flipped, and the 

household received payment accordingly. The households were given the following set of 

gambles to choose from: 

A: Heads- 50 KShs , Tails – 50KShs 

B: Heads- 45 KShs , Tails – 95KShs 

C: Heads- 40 KShs , Tails – 120KShs 

D: Heads- 30 KShs , Tails – 150KShs 

E: Heads- 10 KShs , Tails – 160KShs 

F: Heads- 0 KShs , Tails – 200KShs 

 

In this analysis, household’s level of risk aversion is categorized according to their lottery 

choice by the following: A or B are considered extremely risk averse, C or D are 

moderately risk averse, E or F are extremely risk averse.  
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Table C.2. Summary Statistics of Household Characteristics (N=735) 

  Mean Std. Dev. Min Max 

Idiosyncratic Losses 0.00 0.20 -0.42 0.95 

Semi-Variance of Idiosyncratic Losses 0.035 0.036 0.001 0.230 

     

Male 0.64 - 0 1 

Age of household head 48.07 18.13 18 99 

Number of household members 5.66 2.17 1 19 

Dependency ratio 0.60 0.20 0 1 

HSNP participant (=1 if true) 0.25 - 0 1 

Ratio of herd: camels 0.29 0.30 0 1 

Ratio of herd: cattle 0.33 0.31 0 1 

Herd size (TLU) 15.3 20.1 0 344.1 

Income (Ksh/month) 7,276 11,990 0 236,000 

Ratio income from livestock 0.69 0.42 0 1 

Savings (Ksh) 3,810 35,100 0 1,515,000 

Asset Index -0.19 0.79 -0.94 5.69 

Number of social groups 0.59 0.82 0 6 

Extremely Risk Averse (=1 if true) 0.25 - 0 1 

Moderately Risk Averse (=1 if true) 0.47 - 0 1 

Risk Neutral/Low Risk Aversion (=1 if true) 0.29  - 0 1 

 

The asset index is constructed using factor analysis of a list of important household 

assets and characteristics in the spirit of Sahn and Stifel (2000). Included are counts of 

assets that fall into very small, small, medium, and large assets. Small, medium, and large 

categories are also each divided into two categories according to use (e.g., productive vs. 

other). There are also indicators of water source, household construction, lavatory facilities, 

fuel sources, education, cash on hand, land holdings, poultry, and donkeys. Cattle, camels, 

goats, and sheep are not included in the index as they are captured directly in herd size. 

The factor loadings are found in Table C.3. 
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Table C.3. Factor Loadings Estimated by Factor Analysis and Used to Generate an Asset 

Index 

Variables Factor Loading 

Improved Wall 0.1324 

Improved Floor 0.1302 

Improved Toilet 0.1285 

Improved Light  0.1178 

Improved cooking appliance  0.0766 

Improved Fuel  0.0643 

Improved furniture  0.1650 

Water Source: Open 0.0039 

Water Source: Protected 0.0042 

Water Source: Borehole -0.0082 

Water source: Tap 0.0398 

Water Source: Rainwater catchment 0.0792 

Water Source: Tanker 0.0214 

Education 0.1214 

Total cash savings 0.0851 

Land 0.0511 

Irrigation 0.0331 

Poultry 0.0814 

Donkeys 0.0188 

Very small 0.0397 

Small tools 0.1263 

Small other 0.0531 

Medium tools 0.1636 

Medium other 0.1351 

Large  0.0373 

Large with motor 0.0891 
Note: Division-period dummies included in factor analysis. 
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Appendix D: First Differences Robustness Check 

If there are time-invariant household level fixed effects, the estimates found in Table 6 

may be biased. Taking advantage of the panel characteristic of the survey data, we re-

estimate with a fixed effects estimator. This method requires within-household variation in 

all the variables of interest, so re-analysis is necessarily restricted to that found in column 

2, Table 6. The results are qualitatively the same as the pooled results: there are very few 

statistically significant relationships between the household characteristics examined here 

and idiosyncratic losses and those characteristics explain very little of the variation in 

idiosyncratic losses (Table D.1).  

 

Table D.1. Fixed Effects Regression of Factors Contributing to Idiosyncratic Livestock 

Mortality 

VARIABLES Idiosyncratic Losses 

Asset index# 0.0259 

 (0.2165) 

Asset index squared# 0.7102 

 (0.6859) 

HSNP participant -0.0061 

 (0.0128) 

% herd camels& 0.0298 

 (0.0367) 

% herd cattle& 0.0243 

 (0.0387) 

Herd size (TLU/100)& -0.0858 

 (0.0948) 

Herd size2 (TLU2/1002)& 0.0151 

 (0.1068) 

Herd size3 (TLU3/1003)& -0.0124 

 (0.0270) 

Ratio income from livestock# -0.0251* 

 (0.0137) 

Savings (KShs/1,000)# 0.0042** 

 (0.0020) 

Social groups count# 0.0015 

 (0.0089) 

  

Observations 5,124 

Number of households 736 

R-squared 0.011 
Notes: Regression also includes a houseold size, dependency ratio, and a constant. 
#Variable is lagged by one period in order to reduce potential endogeneity. &Variable 

uses seasonal average monthly herd size. Cluster-robust standard errors in parenthesis. 

*** p<0.01, ** p<0.05, *p<0.1 
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